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NB! These notes are used by myself. They are provided to students as a
supplement to the textbook. They can not substitute the textbook.

Chapter 1. Introduction

Definition: A differential equation is an equation which contains deriva-
tives of the unknown. (Usually it is a mathematical model of some physical
phenomenon.)

Two classes of differential equations:

• O.D.E. (ordinary differential equations): linear and non-linear;

• P.D.E. (partial differential equations). (not covered in math250, but in
math251)

Some concepts related to differential equations:

• system: a collection of several equations with several unknowns.

• order of the equation: the highest order of derivatives.
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• linear or non-linear equations: Let y(t) be the unknown. Then,

a0(t)y
(n) + a1(t)y

(n−1) + · · ·+ an(t)y = g(t), (∗)

is a linear equations. If the equation can not be written as (∗), the it’s
non-linear.

Two things you must know: identify the linearity and order of an equation.

Example 1. Let y(t) be the unknown. Identify the order and linearity of
the following equations.

(a). (y + t)y′ + y = 1,

(b). 3y′ + (t+ 4)y = t2 + y′′,

(c). y′′′ = cos(2ty),

(d). y(4) +
√
ty′′′ + cos t = ey.

Answer.

Problem order linear?
(a). (y + t)y′ + y = 1 1 No
(b). 3y′ + (t + 4)y = t2 + y′′ 2 Yes
(c). y′′′ = cos(2ty) 3 No

(d). y(4) +
√
ty′′′ + cos t = ey 4 No

What is a solution? Solution is a function that satisfied the equation and
the derivatives exist.

Example 2. Verify that y(t) = eat is a solution of the IVP (initial value
problem)

y′ = ay, y(0) = 1.

Here y(0) = 1 is called the initial condition.

Answer. Let’s check if y(t) satisfies the equation and the initial condition:

y′ = aeat = ay, y(0) = e0 = 1.

They are both OK. So it is a solution.

Example 3. Verify that y(t) = 10− ce−t with c a constant, is a solution to
y′ + y = 10.
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Answer.

y′ = −(−ce−t) = ce−t, y′ + y = ce−t + 10− ce−t = 10. OK.

Let’s try to solve one equation.

Example 4. Consider the equation

(t+ 1)y′ = t2

We can rewrite it as (for t 6= −1)

y′ =
t2

t + 1
=

t2 − 1 + 1

t+ 1
=

(t+ 1)(t− 1) + 1

t + 1
= (t− 1) +

1

t+ 1

To find y, we need to integrate y′:

y =

∫

y′(t)dt =

∫
[

(t− 1) +
1

t+ 1

]

dt =
t2

2
− t+ ln |t+ 1|+ c

where c is an integration constant which is arbitrary. This means there are
infinitely many solutions.

Additional condition: initial condition y(0) = 1. (meaning: y = 1 when
t = 0) Then

y(0) = 0 + ln |1|+ c = c = 1, so y(t) =
t2

2
− t + ln |t+ 1|+ 1.

So for equation like y′ = f(t), we can solve it by integration: y =
∫

f(t)dt.

Review on integration:
∫

xn dx =
1

n+ 1
xn+1 + c, (n 6= 1)

∫

1

x
dx = ln |x|+ c

∫

sin x dx = − cosx+ c
∫

cosx dx = sin x+ c
∫

ex dx = ex + c
∫

axdx =
ax

ln a
+ c
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Integration by parts:
∫

u dv = uv −
∫

v du

Chain rule:
d

dt
(f(g(t)) = f ′(g(t)) · g′(t)

Directional field: for first order equations y′ = f(t, y).
Interpret y′ as the slope of the tangent to the solution y(t) at point (t, y) in
the y − t plane.

Example 5. Consider the equation y′ =
3− y

2
. We know the following:

• If y = 3, then y′ = 0, flat slope,

• If y > 3, then y′ < 0, down slope,

• If y < 3, then y′ > 0, up slope.

See the directional field below (with some solutions sketched):
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As t → ∞, we have y → 3.

Example 6. y′ = t + y

• We have y′ = 0 when y = −t,
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• We have y′ > 0 when y > −t,

• We have y′ < 0 when y < −t.
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What can we say about the solutions?

This depends on the initial condition y(0) = y0.

• If y(0) > −1, then y → ∞ as t → ±∞.

• If y(0) < −1, then y → ∓∞ as t → ±∞.

• If y(0) = −1, the y(t) = −t− 1.
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Chapter 2: First order Differential Equations

We consider the equation
dy

dt
= f(t, y)

Overview:

• Two special types of equations: linear, and separable;

• Linear vs. nonlinear;

• modeling;

• autonomous equations.

2.1: Linear equations; Method of integrating

factors

The function f(t, y) is a linear function in y, i.e, we can write

f(t, y) = −p(t)y + g(t).

So we will study the equation

y′ + p(t)y = g(t). (A)

We introduce the method of integrating factors (due to Leibniz): We multiply
equation (A) by a function µ(t) on both sides

µ(t)y′ + µ(t)p(t)y = µ(t)g(t)

The function µ is chosen such that the equation is integrable, meaning the
LHS (Left Hand Side) is the derivative of something. In particular, we re-
quire:

µ(t)y′ + µ(t)p(t)y = (µ(t)y)′, ⇒ µ(t)y′ + µ(t)p(t)y = µ(t)y′ + µ′(t)y
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which requires

µ′(t) =
dµ

dt
= µ(t)p(t), ⇒ dµ

µ
= p(t) dt

Integrating both sides

lnµ(t) =

∫

p(t) dt

which gives a formula to compute µ

µ(t) = exp

(
∫

p(t) dy

)

.

Therefore, this µ is called the integrating factor. Putting back into equation
(A), we get

d

dt
(µ(t)y) = µ(t)g(t), µ(t)y =

∫

µ(t)g(t) dt+ c

which give the formula for the solution

y(t) =
1

µ(t)

[
∫

µ(t)g(t) dt+ c

]

, where µ(t) = exp

(
∫

p(t) dt

)

.

Example 1. Solve y′ + ay = b (a 6= 0).

Answer. We have p(t) = a and g(t) = b. So

µ = exp(

∫

a dt) = eat

so

y = e−at

∫

eatb dt = e−at

(

b

a
eat + c

)

=
b

a
+ ce−at,

where c is an arbitrary constant.

Example 2. Solve y′ + y = e2t.

Answer. We have p(t) = 1 and g(t) = e2t. So

µ(t) = exp(

∫

1 dt) = et

7



and

y(t) = e−t

∫

ete2t dt = et
∫

e3tdt = e−t

(

1

3
e3t + c

)

=
1

3
e2t + ce−t.

Example 3. Solve

(1 + t2)y′ + 4ty = (1 + t2)−2, y(0) = 1.

Answer. First, let’s rewrite the equation into the normal form

y′ +
4t

1 + t2
y = (1 + t2)−3,

so

p(t) =
4t

1 + t2
, g(t) = (1 + t2)−3.

Then

µ(t) = exp

(∫

p(t) dt

)

= exp

(∫

4t

1 + t2
dt

)

= exp(2 ln(1 + t2)) = exp(ln(1 + t2)2) = (1 + t2)2.

Then

y = (1+t2)−2

∫

(1+t2)2(1+t2)−3dt = (1+t2)−2

∫

(1+t2)−1dt =
arctan t + c

(1 + t2)2
.

By the IC y(0) = 1:

y(0) =
0 + c

1
= c = 1, ⇒ y(t) =

arctan t + 1

(1 + t2)2
.

Example 4. Solve ty′ − y = t2e−t, (t > 0).

Answer. Rewrite it into normal form

y′ − 1

t
y = te−t

so
p(t) = −1/t, g(t) = te−t.
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We have

µ(t) = exp(

∫

(−1/t)dt) = exp(− ln t) =
1

t

and

y(t) = t

∫

1

t
te−tdt = t

∫

e−tdt = t(−e−t + c) = −te−t + ct.

Example 5. Solve y − 1
3
y = e−t, with y(0) = a, and discussion how the

behavior of y as t → ∞ depends on the initial value a.

Answer. Let’s solve it first. We have

µ = e−
1

3
t

so

y = e
1

3
t

∫

e−
1

3
te−tdt = e

1

3
t

∫

e−
4

3
tdt = e

1

3
t(−3

4
e−

4

3
t + c).

Plug in the IC to find c

y(0) = e0(−3

4
+ c) = a, c = a+

3

4

so

y(t) = e
1

3
t

(

−3

4
e−

4

3
t + a+

3

4

)

= −3

4
e−t + (a +

3

4
)et/3.

To see the behavior of the solution, we see that it contains two terms. The
first term e−t goes to 0 as t grows. The second term et/3 goes to ∞ as t
grows, but the constant a + 3

4
is multiplied on it. So we have

• If a + 3
4
= 0, i.e., if a = −3

4
, we have y → 0 as t → ∞;

• If a + 3
4
> 0, i.e., if a > −3

4
, we have y → ∞ as t → ∞;

• If a + 3
4
< 0, i.e., if a < −3

4
, we have y → −∞ as t → ∞;

Example 6. Solve ty′ + 2y = 4t2, y(1) = 2.

Answer. Rewrite the equation first

y′ +
2

t
y = 4t, (t 6= 0)
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So p(t) = 2/t and g(t) = 4t. We have

µ(t) = exp(

∫

2/t dt) = exp(2 ln t) = t2

and

y(t) = t−2

∫

4t · t2dy = t−2(t4 + c)

By IC y(1) = 2,
y(1) = 1 + c = 2, c = 1

we get the solution:

y(t) = t2 +
1

t2
, t > 0.

Note the condition t > 0 comes from the fact that the initial condition is
given at t = 1, and we require t 6= 0.

In the graph below we plot several solutions in the t− y plan, depending on
initial data. The one for our solution is plotted with dashed line where the
initial point is marked with a ‘x’.
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2.2: Separable Equations

We study first order equations that can be written as

dy

dx
= f(x, y) =

M(x)

N(y)

where M(x) and N(y) are suitable functions of x and y only. Then we have

N(y) dy = M(x) dx, ⇒
∫

N(y) dy =

∫

M(x) dx

and we get implicitly defined solutions of y(x).

Example 1. Consider
dy

dx
=

sin x

1− y2
.

We can separate the variables:
∫

(1− y2) dy =

∫

sin x dx, ⇒ y − 1

3
y3 = − cosx+ c.

If one has IC as y(π) = 2, then

2− 1

3
· 23 = − cosπ + c, ⇒ c = −5

3
,

so the solution y(x) is implicitly given as

y − 1

3
y3 + cosx+

5

3
= 0.

Example 2. Find the solution in explicit form for the equation

dy

dx
=

3x2 + 4x+ 2

2(y + 1)
, y(0) = −1.

Answer. Separate the variables

∫

2(y − 1) dy =

∫

(3x2 + 4x+ 2) dx , ⇒ (y − 1)2 = x3 + 2x2 + 2x+ c
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Set in the IC y(0) = −1, i.e., y = −1 when x = 0, we get

(−1 − 1)2 = 0 + c, c = 4, (y − 1)2 = x3 + 2x2 + 2x+ 4.

In explicitly form, one has two choices:

y(t) = 1±
√
x3 + 2x2 + 2x+ 4.

To determine which sign is the correct one, we check again by the initial
condition:

y(0) = 1±
√
4 = 1± 2 = −1

We see we must choose the ‘-’ sign. The solution in explicitly form is:

y(x) = 1−
√
x3 + 2x2 + 2x+ 4.

On which interval will this solution be defined?

x3 + 2x2 + 2x+ 4 ≥ 0, ⇒ x2(x+ 2) + 2(x+ 2) ≥ 0

⇒ (x2 + 2)(x+ 2) ≥ 0, ⇒ x ≥ −2.

We can also argue that when x = −2, we have y = 1. At this point |dy/dx| →
∞, therefore solution can not be defined at this point.

The plot of the solution is given below, where the initial data is marked with
‘x’. We also include the solution with the ‘+’ sign, using dotted line.
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Example 3. Solve y′ = 3x2 + 3x2y2, y(0) = 0, and find the interval where
the solution is defined.

Answer. Let’s first separate the variables.

dy

dx
= 3x2(1 + y2), ⇒

∫

1

1 + y2
dy =

∫

3x2 dx, ⇒ arctan y = x3 + c.

Set in the IC:
arctan 0 = 0 + c, ⇒ c = 0

we get the solution

arctan y = x3, ⇒ y = tan(x3).

Since the initial data is given at x = 0, i.e., x3 = 0, and tan is defined on the
interval (−π

2
, π
2
), we have

−π

2
< x3 <

π

2
, ⇒ −

[π

2

]1/3

< x <
[π

2

]1/3

.

Example 4. Solve

y′ =
1 + 3x2

3y2 − 6y
, y(0) = 1

and identify the interval where solution is valid.

Answer. Separate the variables

∫

(3y2 − 6y)dy =

∫

(1 + 3x2)dx y3 − 3y2 = x+ x3 + c.

Set in the IC: x = 0, y = 1, we get

1− 3 = c, ⇒ c = −2,

Then,
y3 − 3y2 = x3 − x− 2.

Note that solution is given in implicitly form.

To find the valid interval of this solution, we note that y′ is not defined is
3y2 − 6y = 0, i.e., when y = 0 or y = 2. These are the two so-called “bad

13



points” where you can not define the solution. To find the corresponding
values of x, we use the solution expression:

y = 0 : x3 + x− 2 = 0,

⇒ (x2 + x+ 2)(x− 1) = 0, ⇒ x = 1

and
y = 2 : x3 + x− 2 = −4, ⇒ x3 + x+ 2 = 0,

⇒ (x2 − x+ 2)(x+ 1) = 0, ⇒ x = −1

(Note that we used the facts x2 + x+ 2 6= 0 and x2 − x+ 2 6= 0 for all x.)

Draw the real line and work on it as following:

- x
0−1−2 1 2

× ×
-�

Therefore the interval is −1 < x < 1.
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2.4: Differences between linear and nonlinear

equations

We will take this chapter before the modeling (ch. 2.3).

For a linear equation

y′ + p(t)y = g(t), y(t0) = y0,

we have the following existence and uniqueness theorem.

Theorem . If p(t) and g(t) are continuous and bounded on an open interval
containing t0, then it has an unique solution on that interval.

Example 1. Find the largest interval where the solution can be defined for
the following problems.

(A). ty′ + y = t3, y(−1) = 3.

Answer. Rewrite: y′ + 1
t
y = t2, so t 6= 0. Since t0 = −1, the interval is

t < 0.

(B). ty′ + y = t3, y(1) = −3.

Answer. The equation is same as (A), so t 6= 0. t0 = 1, the interval is t > 0.

(C). (t− 3)y′ + (ln t)y = 2t, y(1) = 2

Answer. Rewrite: y′ + ln t
t−3

y = 2t
t−3

, so t 6= 3 and t > 0 for the ln function.
Since t0 = 1, the interval is then 0 < t < 3.

(D). y′ + (tan t)y = sin t, y(π) = 100.

Answer. Since t0 = π, and for tan t to be defined we must have t 6= 2k+1
2

π,
k = ±1,±2, · · · . So the interval is π

2
< t < 3π

2
.

For non-linear equation

y′ = f(t, y), y(t0) = y0,

we have the following theorem:

Theorem . If f(t, y), ∂f
∂y
(t, y) are continuous and bounded on an rectangle

(α < t < β, a < y < b) containing (t0, y0), then there exists an open interval
around t0, contained in (α, β), where the solution exists and is unique.
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We note that the statement of this theorem is not as strong as the one for
linear equation.

Below we give two counter examples.

Example 1. Loss of uniqueness. Consider

dy

dy
= f(t, y) = − t

y
, y(−2) = 0.

We first note that at y = 0, which is the initial value of y, we have y′ =
f(t, y) → ∞. So the conditions of the Theorem are not satisfied, and we
expect something to go wrong.

Solve the equation as an separable equation, we get

∫

y dy = −
∫

t dt, y2 + t2 = c,

and by IC we get c = (−2)2+0 = 4, so y2+ t2 = 4, and y = ±
√
4− t2. Both

are solutions. We lose uniqueness of solutions.

Example 2. Blow-up of solution. Consider a simple non-linear equation:

y′ = y2, y(0) = 1.

Note that f(t, y) = y2, which is defined for all t and y. But, due to the
non-linearity of f , solution can not be defined for all t.

This equation can be easily solved as a separable equation.

∫

1

y2
dy =

∫

dt, −1

y
= t+ c, y(t) =

−1

t+ c
.

By IC y(0) = 1, we get 1 = −1/(0 + c), and so c = −1, and

y(t) =
−1

t− 1
.

We see that the solution blows up as t → 1, and can not be defined beyond
that point.

This kind of blow-up phenomenon is well-known for nonlinear equations.
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2.3: Modeling with first order equations

General modeling concept: derivatives describe “rates of change”.

Model I: Exponential growth/decay.

Q(t) = amount of quantity at time t

Assume the rate of change of Q(t) is proportional to the quantity at time t.
We can write

dQ

dt
(t) = r ·Q(t), r : rate of growth/decay

If r > 0: exponential growth
If r < 0: exponential decay

Differential equation:
Q′ = rQ, Q(0) = Q0 .

Solve it: separable equation.

∫

1

Q
dQ =

∫

r dt, ⇒ lnQ = rt+ c, ⇒ Q(t) = ert+c = cert

Here r is called the growth rate. By IC, we get Q(0) = C = Q0. The solution
is

Q(t) = Q0e
rt.

Two concepts:

• Doubling time TD (only if r > 0): is the time that Q(TD) = 2Q0.

Q(TD) = Q0e
rTD = 2Q0, erTD = 2, rTD = ln 2, TD =

ln 2

r
.

• Half life (or half time) TH (only for r < 0): is the time that Q(TH) =
1
2
Q0.

Q(TH) = Q0e
rTH =

1

2
Q0, erTD =

1

2
, rTD = ln

1

2
= − ln 2, TD =

ln 2

−r
.

Note here that TH > 0 since r < 0.
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NB! TD, TH do not depend on Q0. They only depend on r.

Example 1. If interest rate is 8%, compounded continuously, find doubling
time.

Answer. Since r = 0.08, we have TD = ln 2
0.08

.

Example 2. A radio active material is reduced to 1/3 after 10 years. Find
its half life.

Answer. Model: dQ
dt

= rQ, r is rate which is unknown. We have the solution
Q(t) = Q0e

rt. So

Q(10) =
1

3
Q0, Q0e

10r =
1

3
Q0, r =

− ln 3

10
.

To find the half life, we only need the rate r

TH = − ln 2

r
= − ln 2

10

− ln 3
= 10

ln 2

ln 3
.

Model II: Interest rate/mortgage problems.

Example 3. Start an IRA account at age 25. Suppose deposit $2000 at the
beginning and $2000 each year after. Interest rate 8% annually, but assume
compounded continuously. Find total amount after 40 years.

Answer. Set up the model: Let S(t) be the amount of money after t years

ds

dt
= 0.08S + 2000, S(0) = 2000.

This is a first order linear equation. Solve it by integrating factor

S ′ − 0.08S = 2000, µ = e−0.08t

S(t) = e0.08t
∫

2000 · e−0.08tdt = e0.08t
[

2000
e−0.08t

−0.08
+ c

]

=
2000

−0.08
+ ce0.08t

By IC,

S(0) =
2000

−0.08
+ c = 2000, C = 2000(1 +

1

0.08
) = 27000,
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we get
S(t) = 27000e0.08t − 25000.

When t = 40, we have

S(40) = 27000 · e3.2 − 25000 ≈ 637, 378.

Compare this to the total amount invested: 2000 + 2000 ∗ 40 = 82, 000.

Example 4: A home-buyer can pay $800 per month on mortgage payment.
Interest rate is 9% annually, (but compounded continuously), mortgage term
is 20 years. Determine maximum amount this buyer can afford to borrow.

Answer. Set up the model: Let Q(t) be the amount borrowed (principle)
after t years

dQ

dt
= 0.09Q(t)− 800 ∗ 12

The terminal condition is given Q(20) = 0. We must find Q(0).

Solve the differential equation:

Q′ − 0.09Q = −9600, µ = e−0.09t

Q(t) = e0.09t
∫

(−9600)e−0.09tdt = e0.09t
[

−9600
e−0.09t

−0.09
+ c

]

=
9600

0.09
+ ce0.09t

By terminal condition

Q(20) =
9600

0.09
+ ce0.09∗20 = 0, c = − 9600

0.09 · e1.8
so we get

Q(t) =
9600

0.09
− 9600

0.09 · e1.8 e
0.09t.

Now we can get the initial amount

Q(0) =
9600

0.09
− 9600

0.09 · e1.8 =
9600

0.09
(1− e−1.8) ≈ 89, 034.79.

Model III: Mixing Problem.

Example 5. At t = 0, a tank contains Q0 lb of salt dissolved in 100 gal of
water. Assume that water containing 1/4 lb of salt per gal is entering the
tank at a rate of r gal/min. At the same time, the well-mixed mixture is
draining from the tank at the same rate.
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(1). Find the amount of salt in the tank at any time t ≥ 0.

(2). When t → ∞, meaning after a long time, what is the limit amount
QL?

Answer. Set up the model:
Q(t) = amount (lb) of salt in the tank at time t (min)
In-rate: r gal/min × 1/4 lb/gal = r

4
lb/min

Out-rate: r gal/min × Q(t)/100 lb/gal = Q
100

r lb/min

dQ

dt
= [In-rate]− [Out-rate] =

r

4
− r

100
Q, IC. Q(0) = Q0.

(1). Solve the equation

Q′ +
r

100
Q =

r

4
, µ = e(r/100)t.

Q(t) = e−(r/100)t

∫

r

4
e(r/100)tdt = e−(r/100)t

[

r

4
e(r/100)t

100

r
+ c

]

= 25+ce−(r/100)t.

By IC
Q(0) = 25 + c = Q0, c = Q0 − 25,

we get
Q(t) = 25 + (Q0 − 25)e−(r/100)t.

(2). As t → ∞, the exponential term goes to 0, and we have

QL = lim
t→∞

Q(t) = 25lb.

Example 6. Tank contains 50 lb of salt dissolved in 100 gal of water. Tank
capacity is 400 gal. From t = 0, 1/4 lb of salt/gal is entering at a rate of 4
gal/min, and the well-mixed mixture is drained at 2 gal/min. Find:

(1) time t when it overflows;

(2) amount of salt before overflow;

(3) the concentration of salt at overflow.
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Answer. (1). Since the inflow rate 4 gal/min is larger than the outflow rate
2 gal/min, the tank will be filled up at tf :

tf =
400− 100

4− 2
= 150min.

(2). Let Q(t) be the amount of salt at t min.

In-rate: 1/4 lb/gal × 4 gal/min = 1 lb/min

Out-rate: 2 gal/min × Q(t)
100+2t

lb/gal = Q
50+t

lb/min

dQ

dt
= 1− Q

50 + t
, Q′ +

1

50 + t
Q = 1, Q(0) = 50

µ = exp(

∫

1

50 + t
dt) = exp(ln(50 + t)) = 50 + t

Q(t) =
1

50 + t

∫

(50 + t)dt =
1

50 + t
[50t+

1

2
t2 + c]

By IC:
Q(0) = c/50 = 50, c = 2500,

We get

Q(t) =
50t+ t2/2 + 2500

50 + t
.

(3). The concentration of salt at overflow time t = 150 is

Q(150)

400
=

50 · 150 + 1502/2 + 2500

400(50 + 150)
=

17

64
lb/gal.

Model IV: Air resistance

Example 7. A ball with mass 0.5 kg is thrown upward with initial velocity
10 m/sec from the roof of a building 30 meter high. Assume air resistance is
|v|/20. Find the max height above ground the ball reaches.

Answer. Let S(t) be the position (m) of the ball at time t sec. Then, the
velocity is v(t) = dS/dt, and the acceleration is a = dv/dt. Let upward be
the positive direction. We have by Newton’s Law:

F = ma = −mg − v

20
, a = −g − v

20m
=

dv

dt
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Here g = 9.8 is the gravity, and m = 0.5 is the mass. We have an equation
for v:

dv

dt
= − 1

10
v − 9.8 = −0.1(v + 98),

so
∫

1

v + 98
dv =

∫

(−0.1)dt, ⇒ ln |v + 98| = −0.1t+ c

which gives
v + 98 = c̄e−0.1t, ⇒ v = −98 + c̄e−0.1t.

By IC:

v(0) = −98 + c̄ = 10, c̄ = 108, ⇒ v = −98 + 108e−0.1t.

To find the position S, we use S ′ = v and integrate

S(t) =

∫

v(t) dt =

∫

(−98 + 108e−0.1t)dt = −98t+ 108e−0.1t/(−0.1) + c

By IC for S,

S(0) = −1080 + c = 30, c = 1110, S(t) = −98t− 1080e−0.1t + 1110.

At the maximum height, we have v = 0. Let’s find out the time T when max
height is reached.

v(T ) = 0, −98 + 108e−0.1T = 0, 98 = 108e−0.1T , e−0.1T = 98/108,

−0.1T = ln(98/108), T = −10 ln(98/108) = ln(108/98).

So the max height SM is

SM = S(T ) = − 980 ln
108

98
− 1080e−0.1 ln(108/98) + 1110

= −980 ln
108

98
− 1080(98/108) + 1110 ≈ 34.78 m.

Other possible questions:

• Find the time when the ball hit the ground.
Solution: Find the time t = tH for S(tH) = 0.

22



• Find the speed when the ball hit the ground.
Solution: Compute |v(tH)|.

• Find the total distance traveled by the ball when it hits the ground.
Solution: Add up twice the max height SM with the height of the
building.
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2.5: Autonomous equations and population dy-

namics

Definition: An autonomous equation is of the form y′ = f(y), where the
function f for the derivative depends only on y, not on t.

Simplest example: y′ = ry, exponential growth/decay, where solution is
y = y0e

rt.

Definition: Zeros of f where f(y) = 0 are called critical points or equilibrium
points, or equilibrium solutions.

Why? Because if f(y0) = 0, then y(t) = y0 is a constant solution. It is called
an equilibrium.

Question: Is an equilibrium stable or unstable?

Example 1. y′ = y(y − 2). We have two critical points: y1 = 0, y2 = 2.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
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0 0.5 1 1.5 2 2.5 3
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1

2

3

4

t

y

We see that y1 = 0 is stable, and y2 = 2 is unstable.

Example 2. For the equation y′ = f(y) where f(y) is given in the following
plot:
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• (A). What are the critical points?

• (B). Are they stable or unstable?

• (C) Sketch the solutions in the t− y plan, and describe the behavior of
y as t → ∞ (as it depends on the initial value y(0).)

Answer. (A). There are three critical points: y1 = 1, y2 = 3, y3 = 5.

(B). To see the stability, we add arrows on the y-axis:
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We see that y1 = 1 is stable, y2 = 3 is unstable, and y3 = 5 is stable.
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(C). The sketch is given below:
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Asymptotic behavior for y as t → ∞ depends on the initial value of y:

• If y(0) < 1, then y(t) → 1,

• If y(0) = 1, then y(t) = 1;

• If 1 < y(0) < 3, then y(t) → 1;

• If y(0) = 3, then y(t) = 3;

• If 3 < y(0) < 5, then y(t) → 5;

• If y(0) = 5, then y(t) = 5;

• if y(t) > 5, then y(t) → 5.

Stability: is not only stable or unstable.

Example 3. For y′ = y2, we have only one critical point y1 = 0. For y < 0,
we have y′ > 0, and for y > 0 we also have y′ > 0. So solution is increasing
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on both intervals. So on the interval y < 0, solution approaches y = 0 as t
grows, so it is stable. But on the interval y > 0, solution grows and leaves
y = 0, and it is unstable. This type of critical point is called semi-stable.
This happens when one has a double root for f(y) = 0.

Example 4. For equation y′ = f(y) where f(y) is given in the plot
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• (A). Identify equilibrium points;

• (B). Discuss their stabilities;

• (C). Sketch solution in y − t plan;

• (D). Discuss asymptotic behavior as t → ∞.

Answer. (A). y = 0, y = 1, y = 2, y = 3 are the critical points.

(B). y = 0 is stable, y = 1 is semi-stable, y = 2 is unstable, and y = 3 is
stable.

(C). The Sketch is given in the plot:
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(D). The asymptotic behavior as t → ∞ depends on the initial data.

• If y(0) < 1, then y → 0;

• If 1 ≤ y(0) < 2, then y → 1;

• If y(0) = 2, then y(t) = 2;

• If y(0) > 2, then y → 3.

Application in population dynamics: let y(t) be the population of a species.

dy

dt
= (r − ay)y. the logistic equation

dy

dt
= r(1− y

k
))y, k =

r

a
,

r=intrinsic growth rate,
k=environmental carrying capacity.

critical points: y = 0, y = k. Here y = 0 is unstable, and y = k is stable.

If 0 < y(0) < k, then y → k as t grows.
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Chapter 3: Second Order Linear Equations

General form of the equation:

a2(t)y
′′ + a1(t)y

′ + a0(t)y = b(t),

where
a2(t) 6= 0, y(t0) = y0, y′(t0) = ȳ0.

If b(t) ≡ 0, we call it homogeneous. Otherwise, it is called non-homogeneous.

3.1: Homogeneous equations with constant co-

efficients

This is the simplest case: a2, a1, a0 are all constants, and g = 0. Let’s write:

a2y
′′ + a1y

′ + a0 = 0.

Example 1. Solve y′′ = y = 0, (we have here a2 = 1, a1 = 0, a0 = 1).

Answer. Guess y1(t) = et.
Check: y′′ = et, so y′′ − y = et − et = 0, ok.

Guess another: y2(t) = e−t.
Check: y′ = −e−t, so y′′ = e−t, so y′′ − y = et − et = 0, ok.

Observation: Another function y = c1y1 + c2y2 for any arbitrary constant
c1, c2 (this is called a “linear combination of y1, y2.) is also a solution.

Check:
y = c1e

t + c2e
−t,

then
y′ = c1e

t − c2e
−t, y′′ = c1e

t + c2e
−t, ⇒ y′′ − y = 0.

Actually this is a general property. It is called the principle of superposition.

Theorem Let y1(t) and y2(t) be solutions of

a2(t)y
′′ + a1(t)y

′ + a0(t)y = 0
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Then, y = c1y1 + c2y2 for any constants c1, c2 is also a solution.

Proof : If y1 solves the equation, then

a2(t)y
′′
1 + a1(t)y

′
1 + a0(t)y1 = 0. (I)

If y2 solves the equation, then

a2(t)y
′′
2 + a1(t)y

′
2 + a0(t)y2 = 0. (II)

Multiple (I) by c1 and (II) by c2, and add them up:

a2(t)(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2) = 0.

Let y = c1y1 + c2y2, we have

a2(t)y
′′ + a1(t)y

′ + a0(t)y = 0

therefore y is also a solution to the equation.

How to find the solutions of a2y
′′ + a1y

′ + a0y = 0?

We seek solutions in the form y(t) = ert. Find r.

y′ = rert = ry, y′′ = r2ert = r2y

a2r
2y + a1ry + a0y = 0

Since y 6= 0, we get
a2r

2 + a1r
1 + a0 = 0

This is called the characteristic equation.

Conclusion: If r is a root of the characteristic equation, then y = ert is a
solution.

If there are two real and distinct roots r1 6= r2, then the general solution is
y(t) = c1e

r1t+c2e
r2t where c1, c2 are two arbitrary constants to be determined

by initial conditions (ICs).

Example 2. Consider y′′ − 5y′ + 6y = 0.

• (a). Find the general solution.
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• (b). If ICs are given as: y(0) = −1, y′(0) = 5, find the solution.

• (c) What happens when t → ∞?

Answer. (a). The characteristic equation is: r2−5r+6 =, so (r−2)(r−3) =
0, two roots: r1 = 2, r2 = 3. General solution is:

y(t) = c1e
2t + c2e

3t.

(b). y(0) = −1 gives: c1 + c2 = −1.

y′(0) = 5: we have y′ = 2c1e
2t + 3c2e

3t, so y′(0) = 2c1 + 3c2 = 5.

Solve these two equations for c1, c2: Plug in c2 = −1 − c1 into the second
equation, we get 2c1+3(−1−c1) = 5, so c1 = −8. Then c2 = 7. The solution
is

y(t) = −8e2t + 7e3t.

(c). We see that y(t) = e2t · (−8 + tet), and both terms in the product go to
infinity as t grows. So y → ∞.

Example 3. Find the solution for 2y′′ + y′ − y = 0, with initial conditions
y(1) = 0, y′(1) = 3.

Answer. Characteristic equation:

2r2 + r − 1 = 0, ⇒ (2r − 1)(r + 1) = 0, ⇒ r1 =
1

2
, r2 = −1.

General solution is:
y(t) = c1e

t

2 + c2e
−t.

The ICs give
y(1) = 0 : c1e

1

2 + c2e
−1 = 0. (A)

y′(1) = 3 : y′(t) =
1

2
c1e

1

2
t − c2e

−t,
1

2
c1e

1

2 − c2e
−1 = 3. (B)

(A)+(B) gives
3

2
c1e

1

2 = 3, c1 = 2e−
1

2 .

Plug this in (A):

c2 = −ec1e
1

2 = −e2e
1

2 e
1

2 = −2e.
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The solution is

y(t) = 2e−
1

2 e
1

2
t− 2ee−t = 2e

1

2
(t−1) − 2e−t+1,

and as t → ∞ we have y → ∞.

Summary of receipt:

1. Write the characteristic equation;

2. Find the roots;

3. Write the general solution;

4. Set in ICs to get the arbitrary constants c1, c2.

Example 4. Consider the equation y′′ − 5y = 0.

• (a). Find the general solution.

• (b). If y(0) = 1, what should y′(0) be such that y remain bounded as
t → +∞?

Answer. (a). Characteristic equation

r2 − 5 = 0, ⇒ r1 = −
√
5, r2 =

√
5.

General solution is
y(t) = c1e

−
√
5t + c2e

√
5t.

(b). If y(t) remains bounded as t → ∞, then the term e
√
5t must vanish,

which means we must have c2 = 0. This means y(t) = c1e
−
√
5t. If y(0) = 1,

then y(0) = c1 = 1, so y(t) = e−
√
5t. This gives y′(t) = −

√
5e−

√
5t which

means y′(0) = −
√
5.

Example 5. Consider the equation 2y′′ + 3y′ = 0. The characteristic equa-
tion is

2r2 + 3r = 0, ⇒ r(2r + 3) = 0, ⇒ r1 = −3

2
, r2 = 0
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The general solutions is

y(t) = c1e
− 3

2
t + c2e

0t = c1e
− 3

2
t + c2.

As t → ∞, the first term in y vanished, and we have y → c2.

Example 6. Find a 2nd order equation such that c1e
3t + c2e

−t is its general
solution.

Answer. From the form of the general solution, we see the two roots are
r1 = 3, r2 = −1. The characteristic equation could be (r − 3)(r + 1) = 0, or
this equation multiplied by any non-zero constant. So r2−2r−3 = 0, which
gives us the equation

y′′ − 2y′ − 3y = 0.

NB! This answer is not unique. Multiple it by any non-zero constant gives
another equation.
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3.2: Solutions of Linear Homogeneous Equa-

tions; the Wronskian

We consider some theoretical aspects of the solutions to a general 2nd order
linear equations.

Theorem . (Existence and Uniqueness Theorem) Consider the initial value
problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = ȳ0.

If p(t), q(t) and g(t) are continuous and bounded on an open interval I con-
taining t0, then there exists exactly one solution y(t) of this equation, valid
on I.

Example 1. Given the equation

(t2 − 3t)y′′ + ty′ − (t+ 3)y = et, y(1) = 2, y′(1) = 1.

Find the largest interval where solution is valid.

Answer. Rewrite the equation into the proper form:

y′′ +
t

t(t− 3)
y′ − t+ 3

t(t− 3)
y =

et

t(t− 3)
,

so we have

p(t) =
t

t(t− 3)
, q(t) = − t+ 3

t(t− 3)
, g(t) =

et

t(t− 3)
.

We see that we must have t 6= 0 and t 6= 3. Since t0 = 1, then the largest
interval is I = (0, 3), or 0 < t < 3. See the figure below.

- x
0 1 2 3
× ×

t0

?
� -
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Definition. Given two functions f(t), g(t), the Wronskian is defined as

W (f, g)(t) =̇ fg′ − f ′g.

Remark: One way to remember this definition could be using the determi-
nant,

W (f, g)(t) =

∣

∣

∣

∣

f g
f ′ g′

∣

∣

∣

∣

.

Main property of the Wronskian:

• If W (f, g) ≡ 0, then f anf g are linearly dependent.

• Otherwise, they are linearly independent.

Example 2. Check if the given pair of functions are linearly dependent or
not.

(a). f = et, g = e−t.

Answer. We have

W (f, g) = et(−e−t)− ete−t = −2 6= 0

so they are linearly independent.

(b). f(t) = sin t, g(t) = cos t.

Answer. We have

W (f, g) = sin t(sin t)− cos t cos t = −1 6= 0

and they are linearly independent.

(c). f(t) = t+ 1, g(t) = 4t+ 4.

Answer. We have

W (f, g) = (t+ 1)4− (4t+ 4) = 0

so they are linearly dependent. (In fact, we have g(t) = 4 · f(t).)
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(d). f(t) = 2t, g(t) = |t|.
Answer. Note that g′(t) = sign(t) where sign is the sign function. So

W (f, g) = 2t · sign(t)− 2|t| = 0

(we used t · sign(t) = |t|). So they are linearly dependent.

Theorem . Suppose y1(t), y2(t) are two solutions of

y′′ + p(t)y′ + q(t)y = 0.

Then

(I) We have either W (y1, y2) ≡ 0 or W (y1, y2) never zero;

(II) If W (y1, y2) 6= 0, the y = c1y1 + c2y2 is the general solution. They are
also called to form a fundamental set of solutions. As a consequence,
for any ICs y(t0) = y0, y

′(t0) = ȳ0, there is a unique set of (c1, c2) that
give a unique solution.

The next Theorem is probably the most important one in this chapter.

Theorem (Abel’s Theorem) Let y1, y2 be two (linearly independent) solutions
to y′′ + p(t)y′ + q(t)y = 0 on an open interval I. Then, the Wronskian
W (y1, y2) on I is given by

W (y1, y2)(t) = C · exp(
∫

−p(t) dt),

for some constant C depending on y1, y2, but independent on t in I.

Proof. We skip this part. Read the book for a proof.

Example 3. Given

t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0.

36



Find W (y1, y2) without solving the equation.

Answer. We first find the p(t)

p(t) = −t+ 2

t

which is valid for t 6= 0. By Abel’s Theorem, we have

W (y1, y2) = C · exp(
∫

−p(t) dt) = C · exp(
∫

t+ 2

t
dt) = Cet+2 ln |t| = Ct2et.

NB! The solutions are defined on either (0,∞) or (−∞, 0), depending on t0.

From now on, when we say two solutions y1, y2 of the solution, we mean two
linearly independent solutions that can form a fundamental set of solutions.

Example 4. If y1, y2 are two solutions of

ty′′ + 2y′ + tety = 0,

and W (y1, y2)(1) = 2, find W (y1, y2)(5).

Answer. First we find that p(t) = 2/t. By Abel’s Theorem we have

W (y1, y2)(t) = C · exp
{

−
∫

2

t
dt

}

= C · e− ln t = Ct−2.

If W (y1, y2)(1) = 2, then C1−2 = 2, which gives C = 2. So we have

W (y1, y2)(5) = 25−2 =
2

25
.

Example 5. If W (f, g) = 3e4t, and f = e2t, find g.

Answer. By definition of the Wronskian, we have

W (f, g) = fg′ − f ′g = e2tg′ − 2e2tg = 3e4t,

which gives a 1st order equation for g:

g′ − 2g = 3e2t.
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Solve it for g:

µ(t) = e−2t, g(t) = e2t
∫

e−2t3e2t dy = e2t(3t + c).

We can choose c = 0, and get g(t) = 3te2t.

Next example shows how Abel’s Theorem can be used to solve 2nd order
differential equations.

Example 6. Consider the equation y′′ + 2y′ + y = 0. Find the general
solution.

Answer. The characteristic equation is r2 +2r+1 = 0, which given double
roots r1 = r2 = −1. So we know that y1 = e−t is a solutions. How can we
find another solution y2 that’s linearly independent?

By Abel’s Theorem, we have

W (y1, y2) = C exp

{
∫

−2 dt

}

= Ce−2t,

and we can choose C = 1 and get W (y1, y2) = e−2t. By the definition of the
Wronskian, we have

W (y1, y2) = y1y
′
2 − y′1y2 = e−ty′2 − (−e−ty2) = e−t(y′2 + y2).

These two computation must have the same answer, so

e−t(y′2 + y2) = e−2t, y′2 + y2 = e−t.

This is a 1st order equation for y2. Solve it:

µ(t) = et, y2(t) = e−t

∫

ete−t dt = e−t(t+ c).

Choosing c = 0, we get y2 = tet. The general solution is

y(t) = c1y1 + c2y2 = c1e
−t + c2te

−t.

This is called the method of reduction of order. We will study it more later
in chapter 3.4.
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3.3: Complex Roots

The roots of the characteristic equation can be complex numbers. Consider
the equation

ay′′ + by′ + cy = 0, → ar2 + br + c = 0.

The two roots are

r1,2 =
−b±

√
b2 − 4ac

2a
.

If b2 − 4ac < 0, the root are complex, i.e., a pair of complex conjugate
numbers. We will write r1,2 = λ± iµ. There are two solutions:

y1 = e(λ+iµ)t = eλteiµt, y2 = y1 = e(λ−iµ)t = eλte−iµt.

To deal with exponential function with pure imaginary exponent, we need
the Euler’s Formula:

eiβ = cos β + i sin β.

A couple of Examples to practice this formula:

ei
5

6
π = cos

5

6
π + i sin

5

6
π = −

√
3

2
+ i

1

2
.

eiπ = cos π + i sin π = −1.

ea+ib = eaeib = ea(cos b+ i sin b).

Back to y1, y2, we have

y1 = eλt(cosµt+ i sinµt), y2 = eλt(cosµt+ i sinµt).

But these solutions are complex valued. We want real-valued solutions! To
achieve this, we use the Principle of Superposition. If y1, y2 are two solutions,
then 1

2
(y1 + y2),

1
2i
(y1 − y2) are also solutions. Let

ỹ1 =̇
1

2
(y1 + y2) = eλt cosµt, ỹ2 =̇

1

2i
(y1 − y2) = eλt sinµt.

To make sure they are linearly independent, we can check the Wronskian,

W (ỹ1, ỹ2) = µe2λt 6= 0. (home work problem).
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So y1, y2 are linearly independent, and we have the general solution

y(t) = c1e
λt cosµt+ c2e

λt sinµt = eλt(c1 cosµt+ c2 sinµt).

Example 1. (Perfect Oscillation: Simple harmonic motion.) Solve the initial
value problem

y′′ + 4y = 0, y(
π

6
) = 0, y′(

π

6
) = 1.

Answer. The characteristic equation is

r2 + 4 = 0, ⇒ r = ±2i, ⇒ λ = 0, µ = 2.

The general solution is

y(t) = c1 cos 2t+ c2 sin 2t.

Find c1, c2 by initial conditions: since y′ = −2c1 sin 2t+ 2c2 cos 2t, we have

y(
π

6
) = 0 : c1 cos

π

3
+ c2 sin

π

3
=

1

2
c1 +

√
3

2
c2 = 0,

y′(
π

6
) = 1 : −2c1 sin

π

3
+ 2c2 cos

π

3
= −2c1

√
3

2
+ 2c2

1

2
= 1.

Solve these two equations, we get c1 = −
√
3
4

and c2 =
1
4
. So the solution is

y(t) = −
√
3

4
cos 2t +

1

4
sin 2t,

which is a periodic oscillation. This is also called perfect oscillation or simple
harmonic motion.

Example 2. (Decaying oscillation.) Find the solution to the IVP (Initial
Value Problem)

y′′ + 2y′ + 101y = 0, y(0) = 1, y′(0) = 0.
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Answer. The characteristic equation is

r2 + 2r + 101 = 0, ⇒ r1,2 = −1± 10i, ⇒ λ = −1, µ = 10.

So the general solution is

y(t) = e−t(c1 cos 10t+ c2 sin 10t),

so
y′(t) = −e−t(c1 cos t+ c2 sin t) + e−t(−10c1 sin t+ 10c2 cos t)

Fit in the ICs:

y(0) = 1 : y(0) = e0(c1 + 0) = c1 = 1,

y′(0) = 0 : y′(0) = −1 + 10c2 = 0, c2 = 0.1.

Solution is
y(t) = e−t(cos t + 0.1 sin t).

The graph is given below:
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We see it is a decaying oscillation. The sin and cos part gives the oscillation,
and the e−t part gives the decaying amplitude. As t → ∞, we have y → 0.
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Example 3. (Growing oscillation) Find the general solution of y′′ − y′ +
81.25y = 0.

Answer.

r2 − r + 81.25 = 0, ⇒ r = 0.5± 9i, ⇒ λ = 0.5, µ = 2.

The general solution is

y(t) = e0.5t(c1 cos 9t+ c2 sin 9t).

A typical graph of the solution looks like:
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We see that y oscillate with growing amplitude as t grows. In the limit when
t → ∞, y oscillates between −∞ and +∞.

Conclusion: Sign of λ, the real part of the complex roots, decides the type
of oscillation:

• λ = 0: perfect oscillation;

• λ < 0: decaying oscillation;
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• λ > 0: growing oscillation.

We note that since λ = −b
2a
, so the sign of λ follows the sign of −b.
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3.4: Repeated roots; reduction of order

For the characteristic equation ar2+ br+ c = 0, if b2 = 4ac, we will have two
repeated roots

r1 = r2 = r = − b

2a
.

We have one solution y1 = ert. How can we find the second solution which
is linearly independent of y1?

Example 1. Consider the equation y′′+4y′+4y = 0. We have r2+4r+4 = 0,
and r1 = r2 = r = −2. So one solution is y1 = e−2t. What is y2?

Method 1. Use Wronskian and Abel’s Theorem. By Abel’s Theorem we
have

W (y1, y2) = c exp(−
∫

4 dt) = ce−4t = e−4t, (let c = 1).

By the definition of Wronskian we have

W (y1, y2) = y1y
′
2 − y′1y2 = e−2ty′2 − (−2)e−2ty2 = e−2t(y′2 + 2y2).

They must equal to each other:

e−2t(y′2 + 2y2) = e−4t, y′2 + 2y2 = e−2t.

Solve this for y2,

µ = e2t, y2 = e−2t

∫

e2te−2t dt = e−2t(t + C)

Let C = 0, we get y2 = te−2t, and the general solution is

y(t) = c1y1 + c2y2 = c1e
−2t + c2te

−2t.

Method 2. This is the textbook’s version. We guess a solution of the form
y2 = v(t)y1 = v(t)e−2t, and try to find the function v(t). We have

y′2 = v′e−2t + v(−2e−2t) = e−2t(v′ − 2v), y′′2 = e−2t(v′′ − 4v′ + 4v).

Put them in the equation

e−2t(v′′ − 4v′ + 4v) + 4e−2t(v′ − 2v) + 4v(t)e−2t = 0.
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Cancel the term e−2t, and we get v′′ = 0, which gives v(t) = c1t + c2. So

y2(t) = vy1 = (c1t + c2)e
−2t = c1te

−2t + c2e
−2t.

Note that the term c2e
−2t is already contained in cy1. Therefore we can choose

c1 = 1, c2 = 0, and get y2 = te−2t, which gives the same general solution as
Method 1. We observe that this method involves more computation than
Method 1.

A typical solution graph is included below:
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1
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We see if c2 > 0, y increases for small t. But as t grows, the exponential
(decay) function dominates, and solution will go to 0 as t → ∞.

One can show that in general if one has repeated roots r1 = r2 = r, then
y1 = ert and y2 = tert, and the general solution is

y = c1e
rt + c2tr

rt = ert(c1 + c2t).

Example 2. Solve the IVP

y′′ − 2y′ + y = 0, y(0) = 2, y′(0) = 1.
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Answer. This follows easily now

r2 − 2r + 1 = 0, ⇒ r1 = r2 = 1, ⇒ y(t) = (c1 + c2t)e
t.

The ICs give
y(0) = 2 : c1 + 0 = 2, ⇒ c1 = 2.

y′(t) = (c1 + c2t)e
t + c2e

t, y′(0) = c1 + c2 = 1, ⇒ c2 = 1− c1 = −1.

So the solution is y(t) = (2− t)et.

Summary: For ay′′+ by′ + cy = 0, and ar2+ br+ c = 0 has two roots r1, r2,
we have

• If r1 6= r2 (real): y(t) = c1e
r1t + c2e

r2t;

• If r1 = r2 = r (real): y(t) = (c1 + c2t)e
rt;

• If r1,2 = λ± iµ complex: y(t) = eλt(c1 cosµt+ c2 sinµt).

More on reduction of order: This method can be used to find a second
solution y2 if the first solution y1 is given for a second order linear equation.

Example 3. For the equation

2t2y′′ + 3ty′ − y = 0, t > 0,

given one solution y1 =
1
t
, find a second linearly independent solution.

Answer. Method 1: Use Abel’s Theorem and Wronskian. By Abel’s
Theorem, and choose C = 1, we have

W (y1, y2) = exp

{

−
∫

p(t) dt

}

= exp

{

−
∫

3t

2t2
dt

}

= exp

{

−3

2
ln t

}

= t−3/2.

By definition of the Wronskian,

W (y1, y2) = y1y
′
2 − y′1y2 =

1

t
y′2 − (− 1

t2
)y2 = t−3/2.
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Solve this for y2:

µ = exp(

∫

1

t
dt) = exp(ln t) = t, ⇒ y2 =

1

t

∫

t · t− 3

2dt =
1

t
(
2

3
t
3

2 + C).

Let C = 0, we get y2 = 2
3

√
t. Since 2

3
is a constant multiplication, we can

drop it and choose y2 =
√
t.

Method 2: This is the textbook’s version. We saw in the previous example
that this method is inferior to Method 1, therefore we will not focus on it at
all. If you are interested in it, read the book.

Let’s introduce another method that combines the ideas from Method 1 and
Method 2.

Method 3. We will use Abel’s Theorem, and at the same time we will seek
a solution of the form y1 = vy1.

By Abel’s Theorem, we have ( worked out in M1) W (y1, y2) = t−
3

2 . Now,
seek y2 = vy1. By the definition of the Wronskian, we have

W (y1, y2) = y1y
′
2 − y′1y2 = y1(vy1)

′ − y′1(vy1) = y1(v
′y1 + vy′′1)− vy1y

′
1 = v′y21.

Note that this is a general formula.

Now putting y1 = 1/t, we get

v′
1

t2
= t−

3

2 , v′ = t
1

2 , v =

∫

t
1

2dt =
2

3
t
3

2 .

Drop the constant 2
3
, we get

y2 = vy1 = t
3

2

1

t
= t

1

2 .

We see that Method 3 is the most efficient one among all three methods. We
will focus on this method from now on.

Example 4. Consider the equation

t2y′′ − t(t + 2)y′ + (t + 2)y = 0, t > 0.
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Given y1 = t, find the general solution.

Answer. We have

p(t) = −t(t + 2)

t2
= −t + 2

t
= −1− 2

t
.

Let y2 be the second solution. By Abel’s Theorem, choosing c = 1, we have

W (y1, y2) = exp

{

−
∫

(−1− 2

t
)dt

}

= exp{t+ 2 ln t} = t2et.

Let y2 = vy1, the W (y1, y2) = v′y21 = t2v′. Then we must have

t2v′ = t2et, v′ = et, v = et, y2 = tet.

(A cheap trick to double check your solution y2 would be: plug it back into
the equation and see if it satisfies it.) The general solution is

y(t) = c1y2 + c2y2 = c1t + c2te
t.

We observe here that Method 3 is very efficient.

Example 5. Given the equation t2y′′ − (t − 3
16
)y = 0, t > 0, and

y1 = t(1/4)e2
√
t, find y2.

Answer. We will always use method 3. We see that p = 0. By Abel’s
Theorem, setting c = 1, we have

W (y1, y2) = exp(

∫

0dt) = 1.

Seek y2 = vy1. Then, W (y1, y2) = y21v
′ = t

1

2 e4
√
tv′. So we must have

t
1

2 e4
√
tv′ = 1, ⇒ v′ = t−

1

2 e−4
√
t, ⇒ v =

∫

t−
1

2 e−4
√
tdt.

Let u = −4
√
t, so du = −2t−

1

2dt, we have

v =

∫

−1

2
eu du = −1

2
eu = −1

2
e−4

√
t.

So drop the constant −1
2
, we get

y2 = vy1 = e−4
√
tt

1

4 e2
√
t = t

1

4 e−2
√
t.

The general solution is

y(t) = c1y1 + c2y2 = t
1

4 (c1e
2
√
t + c2e

−2
√
t).
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3.6: Non-homogeneous equations; method of

undetermined coefficients

Want to solve the non-homogeneous equation

y′′ + p(t)y′ + q(t)y = g(t), (N)

Steps:

1. First solve the homogeneous equation

y′′ + p(t)y′ + q(t)y = 0, (H)

i.e., find y1, y2, linearly independent of each other, and form the general
solution

yH = c1y1 + c2y2.

2. Find a particular/specific solution Y for (N), by MUC (method of un-
determined coefficients);

3. The general solution for (N) is then

y = yH + Y = c1y1 + c2y2 + Y.

Find c1, c2 by initial conditions, if given.

Key step: step 2.

Why y = yH + Y ?
A quick proof: If yH solves (H), then

y′′H + p(t)y′H + q(t)yH = 0, (A)

and since Y solves (N), we have

Y ′′ + p(t)Y ′ + q(t)Y = g(t), (B)

Adding up (A) and (B), and write y = yH+Y , we get y′′+p(t)y′+q(t)y = g(t).

Main focus: constant coefficient case, i.e.,

ay′′ + by′ + cy = g(t).
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Example 1. Find the general solution for y′′ − 3y′ + 4y = 3e2t.

Answer. Step 1: Find yH.

r2 − 3r − 4 = (r + 1)(r − 4) = 0, ⇒ r1 = −1, r2 = 4,

so
yH = c1e

−t + c2e
4t.

Step 2: Find Y . We guess/seek solution of the same form as the source term
Y = Ae2t, and will determine the coefficient A.

Y ′ = 2Ae2t, Y ′′ = 4Ae2t.

Plug these into the equation:

4Ae2t − 3 · 2Ae2t − 4Ae2t = 3e2t, ⇒ −6A = 3, ⇒ A = −1

2
.

So Y = −1
2
e2t.

Step 3. The general solution to the non-homogeneous solution is

y(t) = yH + Y = c1e
−t + c2e

4t − 1

2
e2t.

Observation: The particular solution Y take the same form as the source
term g(t).

But this is not always true.

Example 2. Find general solution for y′′ − 3y′ + 4y = 2e−t.

Answer. The homogeneous solution is the same as Example 1: yH = c1e
−t+

c2e
4t. For the particular solution Y , let’s first try the same form as g, i.e.,

Y = Ae−t. So Y ′ = −Ae−t, Y ′′ = Ae−t. Plug them back in to the equation,
we get

LHS = Ae−t − 3(−Ae−t)− 4Ae−t = 0 6= 2e−et = RHS.

So it doesn’t work. Why?

We see r1 = −1 and y1 = e−t, which means our guess Y = Ae−t is a solution
to the homogeneous equation. It will never work.
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Second try: Y = Ate−t. So

Y ′ = Ae−t −Ate−t, Y ′′ = −Ae−t − Ae−t + Ate−t = −2Ae−t + Ate−t.

Plug them in the equation

(−2Ae−t + Ate−t)− 3(Ae−t − Ate−t)− 4Ate−t = −5Ae−t = 2e−t,

we get

−5A = 2, ⇒ A = −2

5
,

so we have Y = −2
5
te−t.

Summary 1. If g(t) = aeαt, then the form of the particular solution Y
depends on r1, r2 (the roots of the characteristic equation).

case form of the particular solution Y

r1 6= α and r2 6= α Y = Aeαt

r1 = α or r2 = α, but r1 6= r2 Y = Ateαt

r1 = r2 = α Y = At2eαt

Example 3. Find the general solution for

y′′ − 3y′ − 4y = 3t2 + 2.

Answer. The yH is the same yH = c1e
−t + c2e

4t.

Note that g(t) is a polynomial of degree 2. We will try to guess/seek a
particular solution of the same form:

Y = At2 +Bt + C, Y ′ = 2At+B, Y ′′ = 2A

Plug back into the equation

2A−3(2At+b)−4(At2+Bt+C) = −4At2−(6A+4B)t+(2A−3B−4C) = 3t2+2.
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Compare the coefficient, we get three equations for the three coefficients
A,B,C:

−4A = 3 → A = −3

4

−(6A+ 4B) = 0, → B =
9

8

2A− 3B − 4C = 2, → C =
1

4
(2A− 3B − 2) = −55

32

So we get

Y (t) = −3

4
t2 +

9

8
t− 55

32
.

But sometimes this guess won’t work.

Example 4. Find the particular solution for y′′ − 3y′ = 3t2 + 2.

Answer. We see that the form we used in the previous example Y =
At2 +Bt+ C won’t work because Y ′′ − 3Y ′ will not have the term t2.

New try: multiply by a t. So we guess Y = t(At2+Bt+C) = At3+Bt2+Ct.
Then

Y ′ = 3At2 + 2Bt + C, Y ′′ = 6At + 2B.

Plug them into the equation

(6At+2B)−3(3At2+2Bt+C) = −9At2+(6A−6B)t+(2B−3C) = 3t2+2.

Compare the coefficient, we get three equations for the three coefficients
A,B,C:

−9A = 3 → A = −1

3

(6A− 6B) = 0, → B = A = −1

3

2B − 3C = 2, → C =
1

3
(2B − 2) = −8

9

So Y = t(−1
3
t2 − 1

3
t− 8

9
).
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Summary 2. If g(t) is a polynomial of degree n, i.e.,

g(t) = αnt
n + · · ·+ α1t + α0

the particular solution for

ay′′ + by′ + cy = g(t)

(where a 6= 0) depends on b, c:

case form of the particular solution Y

c 6= 0 Y = Pn(t) = Ant
n + · · ·+ A1t+ A0

c = 0 but b 6= 0 Y = tPn(t) = t(Ant
n + · · ·+ A1t+ A0)

c = 0 and b = 0 Y = t2Pn(t) = t2(Ant
n + · · ·+ A1t+ A0)

Example 5. Find a particular solution for

y′′ − 3y′ − 4y = sin t.

Answer. Since g(t) = sin t, we will try the same form. Note that (sin t)′ =
cos t, so we must have the cos t term as well. So the form of the particular
solution is

Y = A sin t +B cos t.

Then
Y ′ = A cos t− B sin t, Y ′′ = −A sin t− B cos t.

Plug back into the equation, we get

(−A sin t− B cos t)− 3(A cos t−B sin t)− 4(A sin t+ b cos t)

= (−5A + 3B) sin t+ (−3A− 5B) cos t = sin t.

So we must have

−5A + 3B = 1, −3A− 5B = 0, → A =
5

34
, B =

3

34
.

So we get

Y (t) = − 5

34
sin t +

3

34
cos t.
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But this guess won’t work if the form is a solution to the homogeneous
equation.

Example 6. Find a general solution for y′′ + y = sin t.

Answer. Let’s first find yH . We have r2 + 1 = 0, so r1,2 = ±i, and
yH = c1 cos t+ c2 sin t.

For the particular solution Y : We see that the form Y = A sin t + B cos t
won’t work because it solves the homogeneous equation.

Our new guess: multiply it by t, so

Y (t) = t(A sin t +B cos t).

Then
Y ′ = (A sin t +B cos t) + t(A cos t+ B sin t),

Y ′′ = (−2B − At) sin t + (2A−Bt) cos t.

Plug into the equation

Y ′′ + Y = −2B sin t + 2A cos t = sin t, ⇒ A = 0, B = −1

2

So

Y (y) = −1

2
t cos t.

The general solution is

y(t) = yH + Y = c1 cos t+ c2 sin t−
1

2
t cos t.

Summary 3. If g(t) = a sinαt+ b cosαt, the form of the particular solution
depends on the roots r1, r2.

case form of the particular solution Y

r1,2 6= ±αi Y = A sinαt+B cosαt

r1,2 = ±αi Y = t(A sinαt+B cosαt)

Next we study a couple of more complicated forms of g.
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Example 7. Find a particular solution for

y′′ − 3y′ − 4y = tet.

Answer. We see that g = P1(t)e
at, where P1 is a polynomial of degree 1.

Also we see r1 = −1, r2 = 4, so r1 6= a and r2 6= a. For a particular solution
we will try the same form as g, i.e., Y = (At+B)et. So

Y ′ = Aet + (At + b)et = (A+ b)et + Atet,

Y ′′ = · · · = (2A+B)et + Atet.

Plug them into the equation,

[(2A+B)et+Atet]−3[(A+b)et+Atet]−4(At+B)et = (−6At−A−6B)et = tet.

We must have −6At− A− 6B = t, i.e.,

−6A = 1, −A−6B = 0, ⇒ A = −1

6
, B =

1

36
, ⇒ Y = (−1

6
t+

1

36
)et.

However, if the form of g is a solution to the homogeneous equation, it won’t
work for a particular solution. We must multiply it by t in that case.

Example 8. Find a particular solution of

y′′ − 3y′ − 4y = te−t.

Answer. Since a = −1 = r1, so the form we used in Example 7 won’t work
here. Try

Y = t(At +B)e−t = (At2 +Bt)e−t.

Then
Y ′ = · · · = [−At2 + (2A−B)t +B]e−t,

Y ′′ = · · · = [At2 + (B − 4A)t+ 2A− 2B]e−t.

Plug into the equation

[At2 + (B − 4A)t + 2A− 2B]e−t − 3[−At2 + (2A− B)t+B]e−t − 4(At2 +Bt)e−t

= [−10At+ 2A− 5B]e−t = tet.
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So we must have −10At+ 2A− 5B = t, which means

−10A = 1, 2A− 5B = 0, ⇒ A = − 1

10
, B = − 1

25
.

Then

Y =

(

− 1

10
t2 − 1

25
t

)

e−t.

Summary 4. If g(t) = Pn(t)e
at where Pn(t) = αnt

n + · · · + α1t + α0 is a
polynomial of degree n, then the form of a particular solution depends on
the roots r1, r2.

case form of the particular solution Y

r1 6= a and r2 6= a Y = P̃n(t)e
at = (Ant

n + · · ·+ A1t + A0)e
at

r1 = a or r2 = a but r1 6= r2 Y = tP̃n(t)e
at = t(Ant

n + · · ·+ A1t+ A0)e
at

r1 = r2 = a Y = t2P̃n(t)e
at = t2(Ant

n + · · ·+ A1t+ A0)e
at

Other cases of g are treated in a similar way: Check if the form of g is a
solution to the homogeneous equation. If not, then use it as the form of a
particular solution. If yes, then multiply it by t or t2.

We summarize a few cases below.

Summary 5. If g(t) = eαt(a cos βt+ b sin βt), and r1, r2 are the roots of the
characteristic equation. Then

case form of the particular solution Y

r1,2 6= α± iβ Y = eαt(A cos βt+B sin βt)

r1,2 = α± iβ Y = t · eαt(A cosβt+B sin βt)

Summary 6. If g(t) = Pn(t)e
αt(a cos βt + b sin βt) where Pn(t) is a poly-

nomial of degree n, and r1, r2 are the roots of the characteristic equation.
Then
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case form of the particular solution Y

r1,2 6= α± iβ Y = eαt[(Ant
n + · · ·+ A0) cos βt+ (Bnt

n + · · ·+B0) sin βt]

r1,2 = α± iβ Y = t · eαt[(Ant
n + · · ·+ A0) cosβt+ (Bnt

n + · · ·+B0) sin βt]

If the source g(t) has several terms, we treat each separately and add up
later. Let g(t) = g1(t) + g2(t) + · · · gn(t), then, find a particular solution Yi

for each gi(t) term as if it were the only term in g, then Y = Y1+Y2+ · · ·Yn.
This claim follows from the principle of superposition.

In the examples below, we want to write the form of a particular solution.

Example 9. y′′ − 3y′ − 4y = sin 4t + 2e4t + e5t − t.

Answer. Since r1 = −1, r2 = 2, we treat each term in g separately and the
add up:

Y (t) = A sin 4t+B cos 4tCte4t +De5t + (Et + F ).

Example 10. y′′ + 16y = sin 4t+ cos t− 4 cos 4t+ 4.

Answer. The char equation is r2 + 16 = 0, with roots r1,2 = ±4i, and

yH = c1 sin 4t+ c2 cos 4t.

We also note that the terms sin 4t and −4 cos 4t are of the same type, and
we must multiply it by t. So

Y = t(A sin 4t+B cos 4t) + (C cos t+D sin t) + E.

Example 11. y′′ − 2y′ + 2y = et cos t+ 8et sin 2t+ te−t + 4e−t + t2 − 3.

Answer. The char equation is r2−2r+2 = 0 with roots r1,2 = 1± i. Then,
for the term et cos t we must multiply by t.

Y = tet(A1 cos t+A2 sin t)+et(B1 cos 2t+B2 sin 2t)+(C1t+C0)e
−t+De−t+(F2t

2+F1t+F0).
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3.7: Mechanical vibrations

In this chapter we study some applications of the IVP

ay′′ + by′ + cy = g(t), y(0) = y0, y′(0) = ȳ0.

The spring-mass system: See figure below.

(C)

l l

L

l+L

extra
stretch

(A) (B)

Figure (A): a spring in rest, with length l.

Figure (B): we put a mass m on the spring, and the spring is stretched. We
call length L the elongation

Figure (C): The spring-mass system is set in motion by stretch/squueze it
extra, with initial velocity, or with external force.

Force diagram at equilibrium position: mg = Fs.

F

mg

s

Hooke’s law: Spring force Fs = −kL, where L =elongation and k =spring
constant.
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So: we have mg = kL which give

k =
mg

L

which gives a way to obtain k by experiment: hang a mass m and measure
the elongation L.

Model the motion: Let u(t) be the displacement/position of the mass at time
t, assuming the origin u = 0 at the equilibrium position, and downward the
positive direction.
Total elongation: L+ u
Total spring force: Fs = −k(L+ u)

Other forces:
* damping/resistent force: Fd(t) = −γv = −γu′(t), where γ is the damping
constant, and v is the velocity
* External force applied on the mass: F (t), given function of t

Total force on the mass:
∑

f = mg + Fs + Fd + F .

Newton’s law of motion ma =
∑

f gives

ma = mu′′ =
∑

f = mg+Fs+Fd+F, mu′′ = mg−k(L+u)−γu′+F.

Since mg = kL, by rearranging the terms, we get

mu′′ + γu′ + ku = F

where m ia the mass, γ is the damping constant, k is the spring constant,
and F is the external force.

Next we study several cases.

Case 1: Undamped free vibration (simple harmonic motion). We assume no
damping (γ = 0) and no external force (F = 0). So the equation becomes

mu′′ + ku = 0.

Solve it

mr2 + k = 0, r2 = − k

m
, r1,2 = ±

√

k

m
i = ±ω0i, where ω0 =

√

k

m
.
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General solution
u(t) = c1 cosω0t + c2 sinω0t.

Four terms of this motion, frequency, period, amplitude and phase, defined
below:

Frequency: ω0 =

√

k

m

Period: T =
2π

ω0

Amplitude and phase: We need to work on this a bit. We can write

u(t) =
√

c21 + c22

(

c1
√

c21 + c22
cosω0t+

c2
√

c21 + c22
sinω0t

)

.

Now, define δ, such that tan δ = c2/c1, then

sin δ =
c2

√

c21 + c22
, cos δ =

c1
√

c21 + c22

so we have

u(t) =
√

c21 + c22(cos δ · cosω0t + sin δ · sinω0t) =
√

c21 + c22 cos(ω0t− δ).

So amplitude is R =
√

c21 + c22 and phase is δ = arctan
c2
c1
.

A few words on units:

force (f) weight (mg) length (u) mass (m) gravity (g)
lb lb ft lb · sec2/ft 32 ft/sec2

newton newton m kg 9.8 m/sec2

Example 1. A mass weighing 10 lb stretches a spring 2 in. If the mass is
displaced an additional 2 in, and is then set in motion with initial upward
velocity of 1 ft/sec, determine the position, frequency, period, amplitude and
phase of the motion.

Answer. We see this is free harmonic oscillation. We have

mg = 10, g = 32, m =
10

g
=

10

32
=

5

16
.
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And the elongation is L = 2in = 1
6
ft. So k = mg/L = 60. Let u(t) be the

position from equilibrium, we get the equation

mu′′ + ku = 0,
5

16
u′′ + 60u = 0,

therefore

u′′ + 192u = 0, u(0) =
1

6
, u′(0) = −1.

So the frequency is ω0 =
√
192, and the general solution is

u(t) = c1 cosω0t+ c2 sinω0t

By the ICs:

u(0) = c1 =
1

6
, u′(0) = ω0c2 = −1, c2 = − 1

ω0

= − 1√
192

.

(Note that c1 = u(0) and c2 = u′(0)/ω0.) Now we have the position at any
time t

u(t) =
1

6
cosω0t−

1√
192

sinω0t.

The four terms of the motion are

ω0 =
√
192, T =

2π

ω0
=

π√
48

, R =
√

c21 + c22 =

√

19

576
≈ 0.18,

and

δ = arctan
c2
c1

= arctan− 6√
192

= − arctan

√
3

4
.

Case II: Damped free vibration. We assume that γ 6= 0(> 0) and F = 0.

mu′′ + γu′ + ku = 0

then

mr2 + γr + k = 0, r1,2 =
−γ ±

√

γ2 − 4km

2m
.

We see the type of root depends on the sign of γ2 − 4km.

61



• If γ2 − 4km > 0, (i.e., γ >
√
4km) we have two real roots, and the

general solution is u = c1e
r1t + c2e

r2t, with r1 < 0, r2 < 0.

Due to the large damping force, there will be no vibration in the motion.
The mass will simply return to the equilibrium position exponentially.
This kind of motion is called overdamped.

• If γ2−4km = 0, (i.e., γ =
√
4km) we have double roots r1 = r2 = r < 0.

So u = (c1 + c2t)e
rt.

Depending on the sign of c1, c2 (which is determined by the ICs), the
mass may cross the equilibrium point maximum once. This kind of mo-
tion is called critically damped, and this value of γ is called critical

damping.

• If γ2 − 4km < 0, (i.e., γ <
√
4km) we have complex roots

r1,2 = −λ± µi, λ =
γ

2m
, µ =

√

4km− γ2

2m
.

So the position is

u = e−λt(c1 cosµt+ c2 sin µt).

This motion is damped oscillation. We can write

u(t) = e−λtR · cos(µt− δ), R =
√

c21 + c22, δ = arctan
c2
c1
.

Here the term e−λtR is the amplitude, and µ is called the quasi fre-
quency, and the quasi period is 2π

µ
. The graph of the solution looks like

the one for complex roots with negative real part.

Summary: For all cases, since the real part of the roots are always negative,
u will go to zero as t grow. This means, if there is damping, no matter how
big or small, the motion will eventually come to a rest.

Example 2. A mass of 9.8 kg is hanging on a spring with k = 1. The mass
is in a medium that exerts a viscous resistance of 6 lb when the mass has a
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velocity of 48 ft/s. The mass is then further stretched for another 2ft, then
released from rest. Find the position u(t) of the mass.

Answer. We have γ = 6
48

= 1
8
. So the equation for u is

mu′′ + γu′ + ku = 0, u′′ +
1

8
u′ + u = 0, u(0) = 2, u′(0) = 0.

Solve it

r2 +
1

8
r + 1 = 0, r1,2 = − 1

16
±

√
255

16
i, ω0 =

√
255

16

u(t) = e−
1

16
t(c1 cosω0t + c2 sinω0t).

By ICs, we have u(0) = c1 = 2, and

u′(t) = − 1

16
u(t) + e−

1

16
t(−ω0c1 sinω0t+ ω0c2 cosω0t),

u′(0) = − 1

16
u(0) + ω0c2 = 0, c2 =

2√
255

.

So the position at any time t is

u(t) = e−t/16(2 cosω0t−
2√
255

sinω0t).
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3.9: Forced vibrations

In this chapter we assume the external force is F (t) = F0 cosωt. (The case
where F (t) = F0 sinωt is totally similar.)

Case 1: With damping.

mu′′ + γu′ + ku = F0 cosωt.

Solution consists of two parts:

u = uH + U,

uH : the solution of the homogeneous equation,
U : a particular solution.

From discussion is the previous chapter, we know that uH → 0 as t → ∞
for systems with damping. Therefore, this part of the solution is called the
transient solution.

The appearance of U is due to the force term F . Therefore it is called the
forced response. The form is U = R cos(ωt − δ). We see it is a periodic
oscillation for all time t.

As time t → ∞, we have u → U . So U is called the steady state.

Case 2: Without damping.

mu′′ + ku = F0 cosωt

ω0 =

√

k

m
, uH = c1 cosω0t+ c2 sinω0t

The form of the particular solution depends on the value of w. We have two
cases.

Case 2A: if w 6= w0. The particular solution should be

U = A coswt+B coswt

But there is no u′ term, so we only need U = A coswt. And U ′′ = −w2A coswt.
Plug in the equation

m(−w2A coswt) + kA coswt = F0 coswt,
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(k −mw2)A = F0, A =
F0

k −mw2
=

F0

m(w2
0 − w2)

.

General solution

u(t) = c1 cosw0t + c2 sinw0t + A coswt

Assume ICs: u(0) = 0, u′(0) = 0. Find c1, c2.

u(0) = 0 : c1 + A = 0, c1 = −A

u′(0) = 0 : 0 + w0c2 + 0 = 0, c2 = 0

Solution

u(t) = −A cosw0t+A coswt = A(coswt−cosw0t) = 2A sin
w0 − w

2
t·sin w0 + w

2
t.

(We used the trig identity: cos a− cos b = 2 sin b−a
2

sin a+b
2
.)

We see the first term 2A sin w0−w
2

t can be viewed as the varying amplitude,
and the second term sin w0+w

2
t is the vibration.

One particular situation: if w0 6= w but wo ≈ w, then |w0 −w| << |w0 +w|.
The plot looks like (we choose w0 = 9, w = 10)

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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This is called a beat. (One observes it by hitting two nearby keys on a piano,
for example.)

Case 2B: If w = w0. The particular solution is

U = At cosw0t+Bt sinw0t

A typical plot looks like:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

This is called resonance. If the frequency of the source term ω equals to the
frequency of the system ω0, then, small source term could make the solution
grow very large!

Summary:

• With damping: Transient solution plus the forced response term,

• Without damping:
if w = w0: resonance.
if w 6= w0 but w ≈ w0: beat.
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Chapter 6. The Laplace Transform
—used to handle piecewise continuous or impulsive force.

6.1: Definition of the Laplace transform

Topics:

• Definition of Laplace transform,

• Compute Laplace transform by definition, including piecewise contin-
uous functions.

Definition: Given a function f(t), t ≥ 0, its Laplace transform F (s) =
L{f(t)} is defined as

F (s) = L{f(t)} .
=

∫ ∞

0

e−stf(t) dt
.
= lim

A→∞

∫ A

0

e−stf(t) dt

We say the transform converges if the limit exists, and diverges if not.

Next we will give examples on computing the Laplace transform of given
functions by definition.

Example 1. f(t) = 1 for t ≥ 0.

Answer.

F (s) = L{f(t)} = lim
A→∞

∫ A

0

e−st dt = lim
A→∞

−1

s
e−st

∣

∣

∣

∣

A

0

= lim
A→∞

−1

s

[

e−sA − 1
]

=
1

s
, (s > 0)

Example 2. f(t) = et.

Answer.

F (s) = L{f(t)} = lim
A→∞

∫ A

0

e−steatdt = lim
A→∞

∫ A

0

e−(s−a)tdt = lim
A→∞

− 1

s− a
e−(s−a)t

∣

∣

∣

∣

A

0

= lim
A→∞

− 1

s− a

(

e−(s−a)A − 1
)

=
1

s− a
, (s > a)
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Example 3. f(t) = tn, for n ≥ 1 integer.

Answer.

F (s) = lim
A→∞

∫ A

0

e−sttndt = lim
A→∞

{

tn
e−st

−s

∣

∣

∣

∣

A

0

−
∫ A

0

ntn−1e−st

−s
dt

}

= 0 +
n

s
lim
A→∞

∫ A

0

e−sttn−1dt =
n

s
L{tn−1}.

So we get a recursive relation

L{tn} =
n

s
L{tn−1}, ∀n,

which means

L{tn−1} =
n− 1

s
L{tn−2}, L{tn−2} =

n− 2

s
L{tn−3}, · · ·

By induction, we get

L{tn} =
n

s
L{tn−1} =

n

s

(n− 1)

s
L{tn−2} =

n

s

(n− 1)

s

(n− 2)

s
L{tn−3}

= · · · =
n

s

(n− 1)

s

(n− 2)

s
· · · 1

s
L{1} =

n!

sn
1

s
=

n!

sn+1
, (s > 0)

Example 4. Find the Laplace transform of sin at and cos at.

Answer. Method 1. Compute by definition, with integration-by-parts,
twice. (lots of work...)

Method 2. Use the Euler’s formula

eiat = cos at + i sin at, ⇒ L{eiat} = L{cos at} + iL{sin at}.

By Example 2 we have

L{eiat} =
1

s− ia
=

1(s+ ia)

(s− ia)(s + ia)
=

s+ ia

s2 + a2
=

s

s2 + a2
+ i

a

s2 + a2
.

Comparing the real and imaginary parts, we get

L{cos at} =
s

s2 + a2
, L{sin at} =

a

s2 + a2
, (s > 0).
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Remark: Now we will use
∫∞
0

instead of limA→∞
∫ A

0
, without causing confu-

sion.

For piecewise continuous functions, Laplace transform can be computed by
integrating each integral and add up at the end.

Example 5. Find the Laplace transform of

f(t) =

{

1, 0 ≤ t < 2,
t− 2, 2 ≤ t.

We do this by definition:

F (s) =

∫ ∞

0

e−stf(t) dt =

∫ 2

0

e−stdt+

∫ ∞

2

(t− 2)e−stdt

=
1

−s
e−st

∣

∣

∣

∣

2

t=0

+ (t− 2)
1

−s
e−st

∣

∣

∣

∣

∞

t=2

−
∫ A

2

1

−s
e−stdt

=
1

−s
(e−2s − 1) + (0− 0) +

1

s

1

−s
e−st

∣

∣

∣

∣

∞

t=2

=
1

−s
(e−2s − 1) +

1

s2
e−2s
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6.2: Solution of initial value problems

Topics:

• Properties of Laplace transform, with proofs and examples

• Inverse Laplace transform, with examples, review of partial fraction,

• Solution of initial value problems, with examples covering various cases.

Properties of Laplace transform:

1. Linearity: L{c1f(t) + c2g(t)} = c1L{f(t)}+ c2L{g(t)}.

2. First derivative: L{f ′(t)} = sL{f(t)} − f(0).

3. Second derivative: L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0).

4. Higher order derivative:

L{f (n)(t)} = snL{f(t)}−sn−1f(0)−sn−2f ′(0)−· · ·−sf (n−2)(0)−f (n−1)(0).

5. L{−tf(t)} = F ′(s) where F (s) = L{f(t)}. This also implies L{tf(t)} =
−F ′(s).

6. L{eatf(t)} = F (s − a) where F (s) = L{f(t)}. This implies eatf(t) =
L−1{F (s− a)}.

Remarks:

• Note property 2 and 3 are useful in differential equations. It shows
that each derivative in t caused a multiplication of s in the Laplace
transform.

• Property 5 is the counter part for Property 2. It shows that each
derivative in s causes a multiplication of −t in the inverse Laplace
transform.

• Property 6 is also known as the Shift Theorem. A counter part of it
will come later in chapter 6.3.
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Proof:

1. This follows by definition.

2. By definition

L{f ′(t)} =

∫ ∞

0

e−stf ′(t)dt = e−stf(t)
∣

∣

∣

∞

0
−
∫ ∞

0

(−s)e−stf(t)dt = −f(0)+sL{f(t)}.

3. This one follows from Property 2. Set f to be f ′ we get

L{f ′′(t)} = sL{f ′(t)}−f ′(0) = s(sL{f(t)}−f(0))−f ′(0) = s2L{f(t)}−sf(0)−f ′(0).

4. This follows by induction, using property 2.

5. The proof follows from the definition:

F ′(s) =
d

ds

∫ ∞

0

e−stf(t)dt =

∫ ∞

0

∂

∂s
(e−st)f(t)dt =

∫ ∞

0

(−t)e−stf(t)dt = L{−tf(t)}.

6. This proof also follows from definition:

L{eatf(t)}
∫ ∞

0

e−steatf(t)dt =

∫ ∞

0

e−(s−a)tf(t)dt = F (s− a).

By using these properties, we could find more easily Laplace transforms of
many other functions.

Example 1.

From L{tn} =
n!

sn+1
, we get L{eattn} =

n!

(s− a)n+1
.

Example 2.

From L{sin bt} =
b

s2 + b2
, we get L{eat sin bt} =

b

(s− a)2 + b2
.
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Example 3.

From L{cos bt} =
s

s2 + b2
, we get L{eat cos bt} =

s− a

(s− a)2 + b2
.

Example 4.

L{t3 + 5t− 2} = L{t3}+ 5L{t} − 2L{1} =
3!

s4
+ 5

1

s2
− 2

1

s
.

Example 5.

L{e2t(t3 + 5t− 2)} =
3!

(s− 2)4
+ 5

1

(s− 2)2
− 2

1

s− 2
.

Example 6.

L{(t2 + 4)e2t − e−t cos t} =
2

(s− 2)3
+

4

s− 2
− s+ 1

(s + 1)2 + 1
,

because

L{t2 + 4} =
2

s3
+

4

s
, ⇒ L{(t2 + 4)e2t} =

2

(s− 2)3
+

4

s− 2
.

Next are a few examples for Property 5.

Example 7.

Given L{eat} =
1

s− a
, we get L{teat} = −

(

1

s− a

)′
=

1

(s− a)2

Example 8.

L{t sin bt} = −
(

b

s2 + b2

)′
=

−2bs

(s2 + b2)2
.

Example 9.

L{t cos bt} = −
(

s

s2 + b2

)′
= · · · = s2 − b2

(s2 + b2)2
.
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Inverse Laplace transform. Definition:

L−1{F (s)} = f(t), if F (s) = L{f(t)}.

Technique: find the way back.

Some simple examples:

Example 10.

L−1

{

3

s2 + 4

}

= L−1

{

3

2
· 2

s2 + 22

}

=
3

2
L−1

{

2

s2 + 22

}

=
3

2
sin 2t.

Example 11.

L−1

{

2

(s+ 5)4

}

= L−1

{

1

3
· 6

(s+ 5)4

}

=
1

3
L−1

{

3!

(s+ 5)4

}

=
1

3
e−5tL−1

{

3!

s4

}

=
1

3
e−5tt3.

Example 12.

L−1

{

s+ 1

s2 + 4

}

= L−1

{

s

s2 + 4

}

+
1

2
L−1

{

2

s2 + 4

}

= cos 2t
1

2
sin 2t.

Example 13.

L−1

{

s+ 1

s2 − 4

}

= L−1

{

s+ 1

(s− 2)(s+ 2)

}

= L−1

{

3/4

s− 2
+

1/4

s+ 2

}

=
3

4
e2t+

1

4
e−2t.

Here we used partial fraction to find out:

s+ 1

(s− 2)(s+ 2)
=

A

s− 2
+

B

s + 2
, A = 3/4, B = 1/4.
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Solutions of initial value problems.

We will go through one example first.

Example 14. (Two distinct real roots.) Solve the initial value problem by
Laplace transform,

y′′ − 3y′ − 10y = 2, y(0) = 1, y′(0) = 2.

Answer. Step 1. Take Laplace transform on both sides: Let L{y(t)} =
Y (s), and then

L{y′(t)} = sY (s)−y(0) = sY−1, L{y′′(t)} = s2Y (s)−sy(0)−y′(0) = s2Y−s−2.

Note the initial conditions are the first thing to go in!

L{y′′(t)}−3L{y′(t)}−10L{y(t)} = L{2}, ⇒ s2Y−s−2−3(sY−1)−10Y =
2

s
.

Now we get an algebraic equation for Y (s).

Step 2: Solve it for Y (s):

(s2−3s−10)Y (s) =
2

s
+s+2−3 =

s2 − s+ 2

s
, ⇒ Y (s) =

s2 − s+ 2

s(s− 5)(s+ 2)
.

Step 3: Take inverse Laplace transform to get y(t) = L−1{Y (s)}. The main
technique here is partial fraction.

Y (s) =
s2 − s+ 2

s(s− 5)(s+ 2)
=

A

s
+

B

s− 5
+

C

s+ 2
=

A(s− 5)(s+ 2) +Bs(s+ 2) + Cs(s− 5)

s(s− 5)(s+ 2)
.

Compare the numerators:

s2 − s+ 2 = A(s− 5)(s+ 2) +Bs(s+ 2) + Cs(s− 5).

The previous equation holds for all values of s.
Set s = 0: we get −10A = 2, so A = −1

5
.

Set s = 5: we get 35B = 22, so B = 22
35
.

Set s = −2: we get 14C = 8, so C = 4
7
.

Now, Y (s) is written into sum of terms which we can find the inverse trans-
form:

y(t) = AL−1{1
s
}+BL−1{ 1

s− 5
}+ CL−1{ 1

s+ 2
} = −1

5
+

22

35
e5t +

4

7
e−2t.
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Structure of solutions:

• Take Laplace transform on both sides. You will get an algebraic equa-
tion for Y .

• Solve this equation to get Y (s).

• Take inverse transform to get y(t) = L−1{Y }.

Example 15. (Distinct real roots, but one matches the source term.) Solve
the initial value problem by Laplace transform,

y′′ − y′ − 2y = e2t, y(0) = 0, y′(0) = 1.

Answer. Take Laplace transform on both sides of the equation, we get

L{y′′}−L{y′}−L{2y} = L{e2t}, ⇒ s2Y (s)−1−sY (s)−2Y (s) =
1

s− 2
.

Solve it for Y :

(s2−s−2)Y (s) =
1

s− 2
+1 =

s− 1

s− 2
, ⇒ Y (s) =

s− 1

(s− 2)(s2 − s− 2)
=

s− 1

(s− 2)2(s+ 1)
.

Use partial fraction:

s− 1

(s− 2)2(s+ 1)
=

A

s+ 1
+

B

s− 2
+

C

(s− 2)2
.

Compare the numerators:

s− 1 = A(s− 2)2 +B(s+ 1)(s− 2) + C(s+ 1)

Set s = −1, we get A = −2
9
.

Set s = 2, we get C = 1
3
.

Set s = 0 (any convenient values of s can be used in this step), we get B = 2
9
.

So

Y (s) = −2

9

1

s+ 1
+

2

9

1

s− 2
+

1

3

1

(s− 2)2
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and

y(t) = L−1{Y } = −2

9
e−t +

2

9
e2t +

1

3
te2t.

Compare this to the method of undetermined coefficient: general solution
of the equation should be y = yH + Y , where yH is the general solution to
the homogeneous equation and Y is a particular solution. The characteristic
equation is r2 − r − 2 = (r + 1)(r − 2) = 0, so r1 = −1, r2 = 2, and
yH = c1e

−t + c2e
2t. Since 2 is a root, so the form of the particular solution

is Y = Ate2t. This discussion concludes that the solution should be of the
form

y = c1e
−t + c2e

2t + Ate2t

for some constants c1, c2, A. This fits well with our result.

Example 16. (Complex roots.) Solve

y′′ − 2y′ + 2y = e−t, y(0) = 0, y′(0) = 1.

Answer. Before we solve it, let’s use the method of undetermined coefficients
to find out which terms will be in the solution.

r2 − 2r + 2 = 0, (r − 1)1 + 1 = 0, r1,2 = 1± i,

yH = c1e
t cos t+ c2e

t sin t, Y = Ae−t,

so the solution should have the form:

y = yH + Y = c1e
t cos t + c2e

t sin t+ Ae−t.

The Laplace transform would be

Y (s) = c1
s− 1

(s− 1)2 + 1
+ c2

1

(s− 1)2 + 1
+ A

1

s + 1
=

c1(s− 1) + c2
(s− 1)2 + 1

+
A

s+ 1
.

This gives us some idea on which terms to look for in partial fraction.

Now let’s use the Laplace transform:

Y (s) = L{y}, L{y′} = sY − y(0) = sY,

L{y′′} = s2Y − sy(0)− y(0) = s2Y − 1.
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s2Y −1−2sY +2Y =
1

s+ 1
, ⇒ (s2−2s+2)Y (s) =

1

s+ 1
+1 =

s+ 2

s+ 1

Y (s) =
s+ 2

(s+ 1)(s2 − 2s+ 2)
=

s+ 2

(s+ 1)((s− 1)2 + 1)
=

A

s+ 1
+
B(s− 1) + C

(s− 1)2 + 1

Compare the numerators:

s+ 2 = A((s− 1)2 + 1) + (B(s− 1) + C)(s+ 1).

Set s = −1: 5A = 1, A = 1
5
.

Compare coefficients of s2-term: A+B = 0, B = −A = −1
5
.

Set any value of s, say s = 0: 2 = 2A−B + C, C = 2− 2A+B = 9
5
.

Y (s) =
1

5

1

s+ 1
− 1

5

s− 1

(s− 1)2 + 1
+

9

5

1

(s− 1)2 + 1

y(t) =
1

5
e−t − 1

5
et cos t+

9

5
et sin t.

We see this fits our prediction.

Example 17. (Pure imaginary roots.) Solve

y′′ + y = cos 2t, y(0) = 2, y′(0) = 1.

Answer. Again, let’s first predict the terms in the solution:

r2 + 1 = 0, r1,2 = ±i, yH = c1 cos t+ c2 sin t, Y = A cos 2t

so
y = yH + Y = c1 cos t + c2 sin t+ A cos 2t,

and the Laplace transform would be

Y (s) = c1
s

s1 + 1
+ c2

1

s2 + 1
+ A

s

s2 + 4
.

Now, let’s take Laplace transform on both sides:

s2Y − 2s− 1 + Y = L{cos 2t} =
s

s2 + 4
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(s2 + 1)Y (s) =
s

s2 + 4
+ 2s+ 1 =

2s3 + s2 + 9s+ 4

s2 + 4

Y (s) =
2s3 + s2 + 9s+ 4

(s2 + 4)(s2 + 1)
=

As+B

s2 + 1
+

Cs+D

s2 + 4
.

Comparing numerators, we get

2s3 + s2 + 9s+ 4 = (As+B)(s2 + 4) + (Cs+D)(s2 + 1).

One may expand the right-hand side and compare terms to find A,B,C,D,
but that takes more work.

Let’s try by setting s into complex numbers.

Set s = i, and remember the facts i2 = −1 and i3 = −i, we have

−2i− 1 + 9i+ 4 = (Ai+B)(−1 + 4),

which gives

3 + 7i = 3B + 3Ai, ⇒ B = 1, A =
7

3
.

Set now s = 2i:

−16i− 4 + 18i+ 4 = (2Ci+D)(−3),

then

0 + 2i = −3D − 6Ci, ⇒ D = 0, C = −1

3
.

So

Y (s) =
7

3

s

s2 + 1
+

1

s2 + 1
− 1

3

s

s2 + 4

and

y(t) =
7

3
cos t+ sin t− 1

3
cos 2t.

A very brief review on partial fraction, targeted towards inverse

Laplace transform.

Goal: rewrite a fractional form Pn(s)
Pm(s)

(where Pn is a polynomial of degree n)
into sum of “simpler” terms. We assume n < m.
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The type of terms appeared in the partial fraction is solely determined by
the denominator Pm(s). First, fact out Pm(s), write it into product of terms
of (i) s− a, (ii) s2 + a2, (iii) (sa)

2 + b2. The following table gives the terms
in the partial fraction and their corresponding inverse Laplace transform.

term in PM(s) from where? term in partial fraction inverse L.T.

real root, or

s− a g(t) = eat
A

s− a
Aeat

double roots,

(s− a)2 or r = a and g(t) = eat
A

s− a
+

B

(s− a)2
Aeat +Bteat

double roots,

(s− a)3 and g(t) = eat
A

s− a
+

B

(s− a)2
+

C

(s− a)3
Aeat +Bteat +

C

2
t2eat

imaginary roots or

s2 + µ2 g(t) = cosµt or sinµt
As+B

s2 + µ2
A cosµt +B sin µt

complex roots, or

(s− λ)2 + µ2 g(t) = eλt cosµt(or sinµt)
A(s− λ) +B

(s− λ)2 + µ2
eλt(A cosµt +B sin µt)

In summary, this table can be written

Pn(s)

(s− a)(s− b)2(s− c)3((s− λ)2 + µ2)

=
A

s− a
+

B1

s− b
+

B2

(s− b)2
+

C1

s− c
+

C2

(s− c)2
+

C3

(s− c)3
+

D1(s− λ) +D2

(s− λ)2 + µ2
.
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6.3: Step functions

Topics:

• Definition and basic application of unit step (Heaviside) function,

• Laplace transform of step functions and functions involving step func-
tions (piecewise continuous functions),

• Inverse transform involving step functions.

We use steps functions to form piecewise continuous functions.

Unit step function(Heaviside function):

uct =

{

0, 0 ≤ t < c,
1, c ≤ t.

for c ≥ 0. A plot of uc(t) is below:

- t
0

6uc

c

1

For a given function f(t), if it is multiplied with uc(t), then

uctf(t) =

{

0, 0 < t < c,
f(t), c ≤ t.

We say uc picks up the interval [c,∞).

Example 1. Consider

1− uc(t) =

{

1, 0 ≤ t < c,
0, c ≤ t.

A plot of this is given below
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- t
0

61− uc

c

1

We see that this function picks up the interval [0, c).

Example 2. Rectangular pulse. The plot of the function looks like

- t
0

6ua − ub

1

a b

for 0 ≤ a < b < ∞. We see it can be expressed as

ua(t)− ub(t)

and it picks up the interval [a, b).

Example 3. For the function

g(t) =

{

f(t), a ≤ t < b
0, otherwise

We can rewrite it in terms of the unit step function as

g(t) = f(t) ·
(

ua(t)− ub(t)
)

.

Example 4. For the function

ft =







sin t, 0 ≤ t < 1,
et, 1 ≤ t < 5,
t2 5 ≤ t,
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we can rewrite it in terms of the unit step function as we did in Example 3,
treat each interval separately

f(t) = sin t ·
(

u0(t)− u1(t)
)

+ et ·
(

u1(t)− u5(t)
)

+ t2 · u5(t).

Laplace transform of uc(t): by definition

L{uc(t)} =

∫ ∞

0

e−stuc(t) dt =

∫ ∞

c

e−st·1 dt = e−st

−s

∣

∣

∣

∣

∞

t=c

= 0−e−sc

−s
=

e−st

s
, (s > 0).

Shift of a function: Given f(t), t > 0, then

g(t) =

{

f(t− c), c ≤ t,
0, 0 ≤ t < c,

is the shift of f by c units. See figure below.

- t
0

6
f

- t
0

6
g

c

Let F (s) = L{f(t)} be the Laplace transform of f(t). Then, the Laplace
transform of g(t) is

L{g(t)} = L{uc(t) ·f(t− c)} =

∫ ∞

0

e−stuc(t)f(t− c) dt =

∫ ∞

c

e−stf(t− c) dt.

Let y = t− c, so t = y + c, and dt = dy, and we continue

L{g(t)} =

∫ ∞

0

e−s(y+c)f(y) dy = e−sc

∫ ∞

0

e−syf(y) dy = e−csF (s).

So we conclude

L{uc(t)f(t− c)} = e−csL{f(t)} = e−csF (s) ,
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which is equivalent to

L−1{e−csF (s)} = uc(t)f(t− c) .

Note now we are only considering the domain t ≥ 0. So u0(t) = 1 for all
t ≥ 0.

In following examples we will compute Laplace transform of piecewise con-
tinuous functions with the help of the unit step function.

Example 5. Given

f(t) =







sin t, 0 ≤ t <
π

4
,

sin t + cos(t− π

4
),

π

4
≤ t.

It can be rewritten in terms of the unit step function as

f(t) = sin t+ uπ

4
(t) · cos(t− π

4
).

(Or, if we write out each intervals

f(t) = sin t(1− uπ

4
(t)) + (sin t+ cos(t− π

4
))uπ

4
(t) = sin t+ uπ

4
(t) · cos(t− π

4
).

which gives the same answer.)

And the Laplace transform of f is

F (s) = L{sin t}+ L{uπ

4
(t) · cos(t− π

4
)} =

1

s2 + 1
+ e−

π

4
s s

s2 + 1
.

Example 6. Given

f(t) =

{

t, 0 ≤ t < 1,
1, 1 ≤ t.

It can be rewritten in terms of the unit step function as

f(t) = t(1− u1(t)) + 1 · u1(t) = t− (t− 1)u1(t) .
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The Laplace transform is

L{f(t)} = L{t} − L{(t− 1)u1(t)} =
1

s2
− e−s 1

s2
.

Example 7. Given

f(t) =

{

0, 0 ≤ t < 2,
t+ 3, 2 ≤ t.

We can rewrite it in terms of the unit step function as

f(t) = (t + 3)u2(t) = (t− 2 + 5)u2(t) = (t− 2)u2(t) + 5u2(t) .

The Laplace transform is

L{f(t)} = L{(t− 2)u2(t)}+ 5L{u2(t)} = e−2s 1

s2
+ 5e−2s1

s
.

Example 8. Given

g(t) =

{

1, 0 ≤ t < 2,
t2, 2 ≤ t.

We can rewrite it in terms of the unit step function as

g(t) = 1 · (1− u2(t)) + t2u2(t) = 1 + (t2 − 1)u2(t) .

Observe that

t2− 1 = (t− 2+2)2− 1 = (t− 2)2+4(t− 2)+4− 1 = (t− 2)2+4(t− 2)+3 ,

we have
g(t) = 1 +

(

(t− 2)2 + 4(t− 2) + 3
)

u2(t) .

The Laplace transform is

L{g(t)} =
1

s
+ e−2s

(

2

s3
+

4

s2
+

3

s

)

.

Example 9. Given

f(t) =







0, 0 ≤ t < 3,
et, 3 ≤ t < 4,
0, 4 ≤ t.
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We can rewrite it in terms of the unit step function as

f(t) = et (u3(t)− u4(t)) = u3(t)e
t−3e3 − u4(t)e

t−4e4 .

The Laplace transform is

L{g(t)} = e3e−3s 1

s− 1
− e4e−4s 1

s− 1
=

1

s− 1

[

e−3(s−1) − e−4(s−1)
]

.

Inverse transform: We use two properties:

L{uc(t)} = e−cs1

s
, and L{uc(t)f(t− c)} = e−cs · L{f(t)} .

In the following examples we want to find f(t) = L−1{F (s)}.

Example 10.

F (s) =
1− e−2s

s3
=

1

s3
− e−2s 1

s3
.

We know that L−1{ 1
s3
} = 1

2
t2, so we have

f(t) = L−1{F (s)} =
1

2
t2 − u2(t)

1

2
(t− 2)2 =















1

2
t2, 0 ≤ t < 2,

1

2
t2 − 1

2
(t− 2)2, 2 ≤ t.

Example 11. Given

F (s) =
e−3s

s2 + s− 12
= e−3s 1

(s+ 4)(s+ 3)
= e−3s

(

A

s+ 4
+

B

s− 3

)

.

By partial fraction, we find A = −1
7
and B = 1

7
. So

f(t) = L−1{F (s)} = u3(t)
[

Ae−4(t−3) +Be3(t−3)
]

=
1

7
u3(t)

[

−e−4(t−3) + e3(t−3)
]

which can be written as a p/w continuous function

f(t) =







0, 0 ≤ t < 3,

−1

7
e−4(t−3) +

1

7
e3(t−3), 3 ≤ t.
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Example 12. Given

F (s) =
se−s

s2 + 4s+ 5
= e−s s+ 2− 2

(s+ 2)2 + 1
= s−s

[

s+ 2− 2

(s+ 2)2 + 1
+

s + 2− 2

(s+ 2)2 + 1

]

.

So

f(t) = L−1{F (s)} = u1(t)
[

e−2(t−1) cos(t− 1)− 2e−2(t−1) sin(t− 1)
]

which can be written as a p/w continuous function

f(t) =







0, 0 ≤ t < 1,

e−2(t−1) [cos(t− 1)− 2 sin(t− 1)] , 1 ≤ t.
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6.4: Differential equations with discontinuous

forcing functions

Topics:

• Solve initial value problems with discontinuous force, examples of var-
ious cases,

• Describe behavior of solutions, and make physical sense of them.

Next we study initial value problems with discontinuous force. We will start
with an example.

Example 1. (Damped system with force, complex roots) Solve the following
initial value problem

y′′ + y′ + y = g(t), g(t) =

{

0, 0 ≤ t < 1,
1, 1 ≤ t,

, y(0) = 1, y′(0) = 0 .

Answer. Let L{y(t)} = Y (s), so L{y′} = sY − 1 and L{y′′} = s2Y − s.
Also we have L{g(t)} = L{u1(t)} = e−s 1

s
. Then

s2Y − s+ sY − 1 + Y = e−s1

s
,

which gives

Y (s) =
e−s

s(s2 + s+ 1)
+

s+ 1

s2 + s+ 1
.

Now we need to find the inverse Laplace transform for Y (s). We have to do
partial fraction first. We have

1

s(s2 + s+ 1)
=

A

s
+

Bs + C

s2 + s+ 1
.

Compare the numerators on both sides:

1 = A(s2 + s+ 1) + (Bs + C) · s

Set s = 0, we get A = 1.
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Compare s2-term: 0 = A+B, so B = −A = −1.

Compare s-term: 0 = A+ C, so C = −A = −1.

So

Y (s) = e−s

(

1

s
− s+ 1

s2 + s+ 1

)

+
s+ 1

s2 + s+ 1
.

We work out some detail

s+ 1

s2 + s+ 1
=

s+ 1

(s+ 1
2
)2 + (

√
3
2
)2

=
(s+ 1

2
) + 1√

3
·
√
3
2

(s+ 1
2
)2 + (

√
3
2
)2

,

so

L−1

{

s + 1

s2 + s+ 1

}

= e−
1

2
t

(

cos

√
3

2
t +

1√
3
sin

√
3

2
t

)

.

We conclude

y(t) = u1(t)

[

1− e−
1

2
(t−1)

(

cos

√
3

2
(t− 1)− sin

√
3

2
(t− 1)

)]

+e−
1

2
t

[

cos

√
3

2
t+

1√
3
sin

√
3

2
t

]

.

Remark: There are other ways to work out the partial fractions.

Extra question: What happens when t → ∞?

Answer: We see all the terms with the exponential function will go to zero,
so y → 1 in the limit. We can view this system as the spring-mass system
with damping. Since g(t) becomes constant 1 for large t, and the particular
solution (which is also the steady state) with 1 on the right hand side is 1,
which provides the limit for y.

Further observation:

• We see that the solution to the homogeneous equation is

e−
1

2
t

[

c1 cos

√
3

2
t + c2 sin

√
3

2
t

]

,

and these terms do appear in the solution.
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• Actually the solution consists of two part: the forced response and the
homogeneous solution.

• Furthermore, the g has a discontinuity at t = 1, and we see a jump in
the solution also for t = 1, as in the term u1(t).

Example 2. (Undamped system with force, pure imaginary roots) Solve the
following initial value problem

y′′ + 4y = g(t) =







0, 0 ≤ t < π,
1, π ≤ t < 2π,
0, 2π ≤ t,

y(0) = 1, y′(0) = 0 .

Rewrite

g(t) = uπ(t)− u2π(t), L{g} = e−πs1

s
− e−2π 1

s
.

So

s2Y − s+ 4Y =
1

s

(

e−π − e−2π
)

.

Solve it for Y :

Y (s) =
e−π − e−2π

s(s2 + 4)
+

s

s2 + 4
=

e−π

s(s2 + 4)
− e−2π

s(s2 + 4)
+

s

s2 + 4
.

Work out partial fraction

1

s(s2 + 4)
=

A

s
+

Bs + C

s2 + 4
, A =

1

4
, B = −1

4
, C = 0.

So

L−1{ 1

s(s2 + 4)
} =

1

4
− 1

4
cos 2t .

Now we take inverse Laplace transform of Y

y(t) = uπ(t)

(

1

4
− 1

4
cos 2(t− π)

)

− u2π(t)

(

1

4
− 1

4
cos 2(t− 2π)

)

+ cos 2t

= (uπ(t)− u2π)
1

4
(1− cos 2t) + cos 2t

= cos 2t+

{

1
4
(1− cos 2t), π ≤ t < 2π,

0, otherwise,

= homogeneous solution + forced response
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Example 3. In Example 2, let

g(t) =







0, 0 ≤ t < 4,
et, 4 ≤ 5 < 2π,
0, 5 ≤ t.

Find Y (s).

Answer. Rewrite

g(t) = et(u4(t)− u5(t)) = u4(t)e
t−4e4 − u5(t)e

t−5e5 ,

so

G(s) = L{g(t)} = e4e−4s 1

s− 1
− e5e−5s 1

s− 1
.

Take Laplace transform of the equation, we get

(s2+4)Y (s) = G(s)+s, Y (s) =
(

e4e−4s − e5e−5s
) 1

(s− 1)(s2 + 4)
+

s

s2 + 4
.

Remark: We see that the first term will give the forced response, and the
second term is from the homogeneous equation.

The students may work out the inverse transform as a practice.

Example 4. (Undamped system with force, example 2 from the book p.
334)

y′′ + 4y = g(t), y(0) = 0, y′(0) = 0, g(t) =







0, 0 ≤ t < 5,
(t− 5)/5, 5 ≤ 5 < 10,
1, 10 ≤ t.

Let’s first work on g(t) and its Laplace transform

g(t) =
t− 5

5
(u5(t)− u10(t)) + u10(t) =

1

5
u5(t)(t− 5)− 1

5
u10(t)(t− 10),

G(s) = L{g} =
1

5
e−5s 1

s2
− 1

5
e−10s 1

s2

Let Y (s) = L{y}, then

(s2+4)Y (s) = G(s), Y (s) =
G(s)

s2 + 4
=

1

5
e−5s 1

s2(s2 + 4)
−1

5
e−10s 1

s2(s2 + 4)
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Work out the partial fraction:

H(s)
.
=

1

s2(s2 + 4)
=

A

s
+

B

s2
+

Cs+ 2D

s2 + 4

one gets A = 0, B = 1
4
, C = 0, D = −1

8
. So

h(t)
.
= L−1

{

1

s2(s2 + 4)

}

= L−1

{

1

4
· 1

s2
− 1

8
· 2

s2 + 22

}

=
1

4
t− 1

8
sin 2t.

Go back to y(t)

y(t) = L−1{Y } =
1

5
u5(t)h(t− 5)− 1

5
u10(t)h(t− 10)

=
1

5
u5(t)

[

1

4
(t− 5)− 1

8
sin 2(t− 5)

]

− 1

5
u10(t)

[

1

4
(t− 10)− 1

8
sin 2(t− 10)

]

=















0, 0 ≤ t < 5,

1
20
(t− 5)− 1

40
sin 2(t− 5), 5 ≤ 5 < 10,

1
4
− 1

40
(sin 2(t− 5)− sin 2(t− 10)), 10 ≤ t.

Note that for t ≥ 10, we have y(t) = 1
4
+ R · cos(2t + δ) for some amplitude

R and phase δ.

The plots of g and y are given in the book. Physical meaning and qualitative
nature of the solution:

The source g(t) is known as ramp loading. During the interval 0 < t < 5,
g = 0 and initial conditions are all 0. So solution remains 0. For large time
t, g = 1. A particular solution is Y = 1

4
. Adding the homogeneous solution,

we should have y = 1
4
+ c1 sin 2t+ c2 cos 2t for t large. We see this is actually

the case, the solution is an oscillation around the constant 1
4
for large t.
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Chapter 7. Systems of two linear differential

equations

7.1: Introduction to systems of differential equa-

tions

Given
ay′′ + by′ + cy = g(t), y(0) = α, y′(0) = β

we can do a variable change: let

x1 = y, x2 = x′
1 = y′

then
{

x′
1 = x2

x′
2 = y′′ =

1

a
(g(t)− bx2 − cx1)

{

x1(0) = α
x2(0) = β

Observation: For any 2nd order equation, we can rewrite it into a system of
2 first order equations.

Example 1. Given

y′′ + 5y′ − 10y = sin t, y(0) = 2, y′(0) = 4

Rewrite it into a system of first order equations: let x1 = y and x2 = y′ = x′
1,

then
{

x′
1 = x2

x′
2 = y′′ = −5x2 + 10x1 + sin t

I.C.’s:

{

x1(0) = 2
x2(0) = 4

We can do the same thing to any high order equations. For n-th order
differential equation:

y(n) = F (t, y, y′, · · · , y(n−1))

define the variable change:

x1 = y, x2 = y′, · · · xn = y(n−1)
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we get


























x′
1 = y′ = x2

x′
2 = y′′ = x3
...

x′
n−1 = y(n−1) = xn

x′
n = y(n) = F (t, x1, x2, · · · , xn)

with corresponding source terms.

Reversely, we can convert a 1st order system into a high order equation.

Example 2. Given

{

x′
1 = 3x1 − 2x2

x′
2 = 2x1 − 2x2

{

x1(0) = 3
x2(0) = 1

2

Eliminate x2: the first equation gives

2x2 = 3x1 − x′
1, x2 =

3

2
x1 −

1

2
x′
1.

Plug this into second equation, we get

(

3

2
x1 −

1

2
x′
1

)′
= 2x1 − 2x2 = −x1 + x′

1

3

2
x′
1 −

1

2
x′′
1 = −x1 + x′

1

x′′
1 − x′

1 − 2x1 = 0

with the initial conditions:

x1(0) = 3, x′
1(0) = 3x1(0)− 2x2(0) = 8.

This we know how to solve!

Definition of a solution: a set of functions x1(t), x2(t), · · · , xn(t) that satisfy
the differential equations and the initial conditions.
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7.2: Review of matrices

A matrix of size m× n:

A =







a1,1 · · · a1,n
...

am,1 · · · am,n






= (ai,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We consider only square matrices, i.e., m = n, in particular for n = 2 and 3.

Basic operations: A,B are two square matrices of size n.

• Addition: A+B = (aij) + (bij) = (aij + bij)

• Scalar multiple: αA = (α · aij)

• Transpose: AT switch the ai,j with aji. (A
T )T = A.

• Product: For A · B = C, it means ci,j is the inner product of (ith row
of A) and (jth column of B). Example:

(

a b
c d

)

·
(

x y
u v

)

=

(

ax+ bu ay + bv
cx+ du cy + dv

)

We can express system of linear equations using matrix product.

Example 1.






x1 − x2 + 3x3 = 4
2x1 + 5x3 = 0

x2 − x3 = 7
can be expressed as:





1 −1 3
2 0 5
0 1 −1



·





x1

x2

x3



 =





4
0
7





Example 2.

{

x′
1 = a(t)x1 + b(t)x2 + g1(t)

x′
2 = c(t)x1 + d(t)x2 + g2(t)

⇒
(

x1

x2

)′
=

(

a(t) b(t)
c(t) d(t)

)

·
(

x1

x2

)

+

(

g1(t)
g2(t)

)

Some properties:

• Identity I: I = diag(1, 1, · · · , 1), AI = IA = A.
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• Determinant det(A):

det

(

a b
c d

)

= ad− bc,

det





a b c
u v w
x y z



 = avx+ bwx+ cuy − xvc− ywa− zub.

• Inverse inv(A) = A−1: A−1A = AA−1 = I.

• The following statements are all equivalent:

– (1) A is invertible;

– (2) A is non-singular;

– (3) det(A) 6= 0;

– (4) row vectors in A are linearly independent;

– (5) column vectors in A are linearly independent.

– (6) All eigenvalues of A are non-zero.

95



7.3: Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of A (A is 2× 2 or 3× 3.)

λ: scalar value, ~v: column vector, ~v 6≡ 0.
If A~v = λ~v, then (λ,~v) is the (eigenvalue, eigenvector) of A.

They are also called an eigen-pair of A.

Remark: If ~v is an eigenvector, then α~v for any α 6= 0 is also an eigenvector,
because

A(α~v) = αA~v = αλ~v = λ(α~v).

How to find (λ, v):

A~v − λ~v = 0, (A− λI)~v = 0, det(A− λI) = 0.

We see that det(A−λI) is a polynomial of degree 2 (or 3) in λ, and it is also
called the characteristic polynomial of A. We need to find its roots.

Example 1: Find the eigenvalues and the eigenvectors of A where

A =

(

1 1
4 1

)

.

Answer. Let’s first find the eigenvalues.

det(A−λI) = det

(

1− λ 1
4 1− λ

)

= (1−λ)2−4 = 0, λ1 = −1, λ2 = 3.

Now, let’s find the eigenvector ~v1 for λ1 = −1: let ~v1 = (a, b)T

(A− λ1I)~v1 = 0, ⇒
(

1− (−1) 1
4 1− (−1)

)

·
(

a
b

)

=

(

0
0

)

,

⇒
(

2 1
4 2

)

·
(

a
b

)

=

(

0
0

)

,

so

2a+ b = 0, choose a = 1, then we have b = −2, ⇒ ~v1 =

(

1
−2

)

.
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Finally, we will compute the eigenvector ~v2 = (c, d)T for λ2 = 3:

(A− λ1I)~v2 = 0, ⇒
(

1− 3 1
4 1− 3

)

·
(

c
d

)

=

(

0
0

)

,

⇒
(

−2 1
4 −2

)

·
(

c
d

)

=

(

0
0

)

,

so

2c− d = 0, choosec = 1, then we have d = 2, ⇒ ~v2 =

(

1
2

)

.

Example 2. Eigenvalues can be complex numbers.

A =

(

2 −9
4 2

)

.

Let’s first find the eigenvalues.

det(A−λI) = det

(

2− λ −9
4 2− λ

)

= (2−λ)2+36 = 0, ⇒ λ1,2 = 2±6i

We see that λ2 = λ̄1, complex conjugate. The same will happen to the
eigenvectors, i.e., ~v1 = ~̄v2. So we need to only find one. Take λ1 = 2+ 6i, we
compute ~v = (v1, v2)T :

(A− λ1I)~v = 0,

(

−i6 −9
4 −i6

)

·
(

v1

v2

)

= 0,

−6iv1 − 9v2 = 0, choose v1 = 1, so v2 = −2

3
i,

so

~v1 =

(

1
−2

3
i

)

, ~v2 = ~̄v1 =

(

1
2
3
i

)

.
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7.4: Basic theory of systems of first order lin-

ear equation

General form of a system of first order equations written in matrix-vector
form:

~x′ = P (t)~x+ ~g.

If ~g = 0, it is homogeneous. We only consider this case, so

~x′ = P (t)~x.

Superposition: If ~x1(t) and ~x2(t) are two solutions of the homogeneous
system, then any linear combination c1~x1 + c2~x2 is also a solution.

Wronskian of vector-valued functions are defined as

W [~x1(t), ~x2(t), · · · , ~xn(t)] = detX(t)

where X is a matrix whose columns are the vectors ~x1(t), ~x2(t), · · · , ~xn(t).

If detX(t) 6= 0, then
(

~x1(t), ~x2(t), · · · , ~xn(t)
)

is a set of linearly independent
functions.

A set of linearly independent solutions
(

~x1(t), ~x2(t), · · · , ~xn(t)
)

is said to be
a fundamental set of solutions.

The general solution is the linear combination of these solutions, i.e.

~x = c1~x1(t) + c2~x2(t) + · · ·+ cn~xn(t).
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7.5: Homogeneous systems of two equations

with constant coefficients.

We consider the following initial value problem:

{

x′
1 = ax1 + bx2

x′
2 = cx1 + dx2

I.C.’s:

{

x1(0) = x̄1

x2(0) = x̄2

In matrix vector form:

~x′ = A~x, ~x =

(

x1

x2

)

, ~x(0) =

(

x̄1

x̄2

)

A =

(

a b
c d

)

.

Claim: If (λ,~v) is an eigen-pair for A, then ~z = eλt~v is a solution to ~x′ = A~x.

Proof.

~z′ = (eλt~v)′ = (eλt)′~v = λeλt~v

A~z = A(eλt~v) = eλt(A~v) = eλtλ~v

Therefore ~z′ = A~z so ~z is a solution.

Steps to solve the initial value problem:

• Step I: Find eigenvalues of A: λ1, λ2.

• Step II: Find the corresponding eigenvectors ~v1, ~v2.

• Step III: Form two solutions: ~z1 = eλ1t~v1, ~z2 = eλ2t~v2.

• Step IV: Check that ~z1, ~z2 are linearly independent: the Wronskian

W (~z1, ~z2) = det(~z1, ~z2) 6= 0.

(This step is usually OK in our problems.)

• Step V: Form the general solution: ~x = c1~z1 + c2~z2.

• If initial condition ~x(0) is given, then use it to determine c1, c2.
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We will start with an example.

Example 1. Solve

~x′ = A~x, A =

(

1 1
4 1

)

.

First, find out the eigenvalues of A. By an example in 7.3, we have

λ1 = −1, λ2 = 3, ~v1 =

(

1
−2

)

, ~v1 =

(

1
2

)

,

So the general solution is

~x = c1e
λ1t~v1 + c2e

λ2t~v2 = c1e
−t

(

1
−2

)

+ c2e
3t

(

1
2

)

.

Write it out in components:
{

x1(t) = c1e
−t + c2e

3t

x2(t) = −2c1e
−t + 2c2e

3t .

Qualitative property of the solutions:

• What happens when t → ∞?

If c2 > 0, then x1 → ∞, x2 → ∞.

If c2 < 0, then x1 → −∞, x2 → −∞.

Asymptotic relation between x1, x2: look at x1

x2
:

x1

x2

=
c1e

−t + c2e
3t

−2c1e−t + 2c2e3t
.

As t → ∞, we have
x1

x2

=
c2e

3t

2c2e3t
=

1

2
.

This means, x1 → 2x2 asymptotically.

• What happens when t → −∞?

Looking at x1

x2

, we see as t → −∞ we have

x1

x2
=

c1e
−t

−2c1e−t
= −1

2
,

which means, x1 → −2x2 asymptotically as t → −∞.
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Phase portrait. is the trajectories of various solutions in the x2−x1 plane.

• Since A is non-singular, then ~x = ~0 is the only critical point such that
~x′ = A~x = 0.

• If c1 = 0, then
x1

x2
=

c2e
3t

2c2e3t
=

1

2
, so the trajectory is a straight line

x1 = 2x2.
Note that this is exactly the direction of ~v2.
Since λ2 = 3 > 0, the trajectory is going away from 0.

• If c2 = 0, then x1

x2

= c1e−t

−2c1e−t = −1
2
, so the trajectory is another straight

line x1 = −2x2.
Note that this is exactly the direction of ~v1.
Since λ2 = −1 < 0, the trajectory is going towards 0.

• For general cases where c1, c2 are not 0, the trajectories should start
(asymptotically) from line x1 = −2x2, and goes to line x1 = 2x2 asymp-
totically as t grows.

- x1

6x2

�K
~v2~v1

�

�U

K

~v1

~v2

�

-

? 6

Definition: If A has two real eigenvalues of opposite signs, the origin (critical
point) is called a saddle point. A saddle point is unstable.

Tips for drawing phase portrait for saddle point: only need the eigenvalues
and eigenvectors!
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General case: If two eigenvalues of A are λ1 < 0 and λ2 > 0, with two
corresponding eigenvectors ~v1, ~v2. To draw the phase portrait, we follow
these guidelines:

• The general solution is

~x = c1e
λ1t~v1 + c2e

λ2t~v2.

• If c1 = 0, then the solution is ~x = c2e
λ2t~v2. We see that the solution

vector is a scalar multiple of ~v2. This means a line parallel to ~v2 through
the origin is a trajectory. Since λ2 > 0, solutions |~x| → ∞ along this
line, so the arrows are pointing away from the origin.

• The similar other half: if c2 = 0, then the solution is ~x = c1e
λ1t~v1.

We see that the solution vector is a scalar multiple of ~v1. This means
a line parallel to ~v1 through the origin is a trajectory. Since λ1 < 0,
solutions approach 0 along this line, so the arrows are pointing toward
the origin.

• Now these two lines cut the plane into 4 regions. We need to draw at
least one trajectory in each region. In the region, we have the general
case, i.e., c1 6= 0 and c2 6= 0. We need to know the asymptotic behavior.
We have

t → ∞, => ~x → c2e
λ2t~v2

t → −∞, => ~x → c1e
λ1t~v1

We see these are exactly the two straight lines we just made. This
means, all trajectories come from the direction of ~v1, and will approach
~v2 as t grows. See the plot below.
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- x1

6x2

�
K ~v2

~v1

	

�U

K

~v1

~v2

i

q



�

Example 2. Suppose we know the eigenvalues and eigenvectors of A:

λ1 = 3, ~v1 =

(

1
−1

)

, λ1 = −3, ~v2 =

(

1
0

)

.

Then the phase portrait looks like this:

- x1

6x2

-I ~v2

~v1

- �

I

R

~v1

~v2
6

?j

Y
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If the two real distinct eigenvalue have the same sign, the situation is quite
different.

Example 3. Consider the homogeneous system

~x′ = A~x, A =

(

−3 2
1 −2

)

.

Find the general solution and sketch the phase portrait.

Answer.

• Eigenvalues of A:

det(A−λI) = det

(

−3 2
1 −2

)

= (−3−λ)(−2−λ)−2 = λ2+5λ+4 = (λ+1)(λ+4) = 0,

So λ1 = −1, λ2 = −4. (Two eigenvalues are both negative!)

• Find the eigenvector for λ1. Call it ~v1 = (a, b)T ,

(A−λ1I)~v1 =

(

−3 + 1 2
1 −2 + 1

)

·
(

a
b

)

=

(

−2 2
1 −1

)

·
(

a
b

)

=

(

0
0

)

.

This gives a = b. Choose it to be 1, we get ~v1 = (1, 1)T .

• Find the eigenvector for λ2. Call it ~v2 = (c, d)T ,

(A−λ2I)~v1 =

(

−3 + 4 2
1 −2 + 4

)

·
(

c
d

)

=

(

1 2
1 2

)

·
(

c
d

)

=

(

0
0

)

.

This gives c + 2d = 0. Choose d = 1, then c = −2. So ~v2 = (−2, 1)T .

• General solution is

~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2 = c1e
−t

(

1
1

)

+ c2e
−4t

(

−2
1

)

.

Write it out in components:

{

x1(t) = c1e
−t − 2c2e

−4t

x2(t) = c1e
−t + c2e

−4t .
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Phase portrait:

• If c1 = 0, then ~x = c2e
λ2t~v2, so the straight line through the origin

in the direction of ~v2 is a trajectory. Since λ2 < 0, the arrows point
toward the origin.

• If c2 = 0, then ~x = c1e
λ1t~v1, so the straight line through the origin

in the direction of ~v1 is a trajectory. Since λ1 < 0, the arrows point
toward the origin.

• For the general case, when c1 6= 0 and c2 6= 0, we have

t → −∞, => ~x → 0, ~x → c2e
λ2t~v2

t → ∞, => |~x| → ∞, ~x → c1e
λ1t~v1

So all trajectories come into the picture in the direction of ~v2, and
approach the origin in the direction of ~v1. See the plot below.

- x1

6x2

�Y
~v1~v2

�

	

j

Y

~v1

~v2

-

�

?

6

In the previous example, if λ1 > 0, λ2 > 0, say λ1 = 1 and λ2 = 4, and ~v1, ~v2
are the same, then the phase portrait will look the same, but with all arrows
going away from 0.
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Definition: If λ1 6= λ2 are real with the same sign, the critical point ~x = 0
is called a node.

If λ1 > 0, λ2 > 0, this node is called a source.

If λ1 < 0, λ2 < 0, this node is called a sink.

A sink is stable, and a source is unstable.

Example 4. (Source node) Suppose we know the eigenvalues and eigenvec-
tors of A are

λ1 = 3, λ2 = 4, ~v1 =

(

1
2

)

, ~v2 =

(

1
−3

)

.

(1) Find the general solution for ~x′ = A~x, (2) Sketch the phase portrait.

Answer. (1) The general solution is simple, just use the formula

~x = c1e
λ1t~v1 + c2e

λ2t~v2 = c1e
3t

(

1
2

)

+ c2e
4t

(

1
−3

)

.

(2) Phase portrait: Since λ2 > λ1, then the solution approach ~v2 as time
grows. As t → −∞, ~x → c1e

λ1t~v1. See the plot below.

- x1

6x2

�M
~v1~v2

�

�M

N

~v1

~v2

�

-
6

?

Summary:

(1). If λ1 and λ2 are real and with opposite sign: the origin is a saddle point,
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and it’s unstable;
(2). If λ1 and λ2 are real and with same sign: the origin is a node.
If λ1, λ2 > 0, it’s a source node, and it’s unstable;
If λ1, λ2 < 0, it’s a sink node, and it’s stable;
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7.6: Complex eigenvalues

If A has two complex eigenvalues, they will be a pair of complex conjugate
numbers, say λ1,2 = α± iβ, β 6= 0.

The two corresponding eigenvectors will also be complex conjugate, i.e,

~v1 =~̄v2.

We have two solutions

~z1 = eλ1t~v1, ~z2 = eλ2t~v2.

They are complex-valued functions, and they also are complex conjugate.
We seek real-valued solutions. By the principle of superposition,

~y1 =
1

2
(~z1 + ~z2) = Re(~z1), ~y2 =

1

2i
(~z1 − ~z2) = Im(~z1)

are also two solutions, and they are real-valued.

One can show that they are linearly independent, so they form a set of
fundamental solutions. The general solution is then ~x = c1~y1 + c2~y2.

Now let’s derive the formula for the general solution. We have two eigenval-
ues: λ and λ̄, two eigenvectors: ~v and ~̄v, which we can write

λ = α+ iβ, ~v = ~vr + i~vi.

One solution can be written

~z = eλt~v = e(α+iβ)t(~vr + i~vi)e
αt(cos βt+ i sin βt) · (~vr + i~vi)

= eαt (cos βt · ~vr − sin βt · ~vi + i(sin βt · ~vr + cos βt · ~vi)) .

The general solution is

~x = c1e
αt (cos βt · ~vr − sin βt · ~vi) + c2e

αt (sin βt · ~vr + cos βt · ~vi) .

Notice now if α = 0, i.e., we have pure imaginary eigenvalues. The ~x is a
harmonic oscillation, which is a periodic function. This means in the phase
portrait all trajectories are closed curves.
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Example 1. (pure imaginary eigenvalues.) Find the general solution and
sketch the phase portrait of the system:

~x ′ = A~x, A =

(

0 −4
1 0

)

.

Answer. First find the eigenvalues of A:

det(A− λI) = λ2 + 4 = 0, λ1,2 = ±2i.

Eigenvectors: need to find one ~v = (a, b)T for λ = 2i:

(A− λI)~v = 0,

(

−2i −4
1 −2i

)

·
(

a
b

)

=

(

0
0

)

.

a− 2ib = 0, choose b = 1, then a = 2i,

then

~v =

(

2i
1

)

=

(

0
1

)

+ i

(

2
0

)

.

The general solution is

~x = c1

[

cos 2t ·
(

0
1

)

− sin 2t ·
(

2
0

)]

+c2

[

sin 2t ·
(

0
1

)

+ cos 2t ·
(

2
0

)]

.

Write out the components, we get

x1(t) = −2c1 sin 2t+ 2c2 cos 2t

x2(t) = c1 cos 2t + c2 sin 2t.

Phase portrait:

• ~x is a periodic function, so all trajectories are closed curves around the
origin.

• They do not intersect with each other. This follows from the uniqueness
of the solution.

• They are ellipses. Because we have the relation:

(x1/2)
2 + (x2)

2 = constant.
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• The arrows are pointing either clockwise or counter clockwise, deter-
mined by A. In this example, take ~x = (1, 0)T , a point on the x1-axis.
By the differential equations, we get ~x ′ = A~x = (0, 1)T , which is a
vector pointing upward. So the arrows are counter-clockwise.

See plot below.

x1

x2

Definition. The origin in this case is called a center. A center is stable
(b/c solutions don’t blow up), but is not asymptotically stable (b/c solutions
don’t approach the origin as time goes).

If the complex eigenvalues have non-zero real part, the situation is still dif-
ferent.

Example 2. Consider the system

~x ′ = A~x, A =

(

3 −2
4 −1

)

.

First, we compute the eigenvalues:

det(A− λI) = (3− λ)(−1− λ) + 8 = λ2 − 2λ+ 5 = 0,

λ1,2 = 1± 2i, ⇒ α = 1, β = 2.

Eigenvectors: need to compute only one ~v = (a, b)T . Take λ = 1 + 2i,

(A− λI)~v =

(

2− 2i −2
4 −2− 2i

)

·
(

a
b

)

=

(

0
0

)

,
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(2− 2i)a− 2b = 0.

Choosing a = 1, then b = 1− i, so

~v =

(

1
1− i

)

=

(

1
1

)

+ i

(

0
−1

)

.

So the general solution is:

~x = c1e
t

[

cos 2t ·
(

1
1

)

− sin 2t ·
(

0
−1

)]

+ c2e
t

[

sin 2t ·
(

1
1

)

− cos 2t ·
(

0
−1

)]

= c1e
t

(

cos 2t
cos 2t+ sin 2t

)

+ c2e
t

(

sin 2t
sin 2t− cos 2t

)

.

Phase portrait. Solution is growing oscillation due to the et. If this term
is not present, (i.e., the eigenvalues would be pure imaginary), then the
solutions are perfect oscillations, whose trajectory would be closed curves
around origin, as the center. But with the et term, we will get spiral curves.
Since α = 1 > 0, all arrows are pointing away from the origin.

To determine the direction of rotation, we need to go back to the original
equation and take a look at the directional field.

Consider the point (x1 = 1, x2 = 0), then ~x′ = A~x = (3, 4)T . The arrow
should point up with slope 4/3.

At the point ~x = (0, 1)T , we have ~x′ = (−2,−1)T .

Therefore, the spirals are rotating counter clockwise. We don’t stress on the
exact shape of the spirals. See plot below.
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In this case, the origin (the critical point) is called the spiral point. The
origin in this example is an unstable critical point since α > 0.

Remark: If α < 0, then all arrows will go towards the origin. The origin
will be a stable critical point. An example is provided in the text book. We
will go through it here.

Example 3. Consider

~x ′ =

(

−1
2

1
−1 −1

2

)

~x.

The eigenvalues and eigenvectors are:

λ1,2 = −1

2
± i, ~v =

(

1
±i

)

=

(

1
0

)

± i

(

0
1

)

.

Since the formula for the general solution is not so “friendly” to memorize,
we use a different approach.

We know that one solution is

~z = eλ1t~v1 = e−( 1
2
+i)t

[(

1
0

)

± i

(

0
01

)]

.
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This is a complex values function. We know the real part and the imaginary
part are both solutions, so work them out:

~z = e−
1

2
t

[

cos t

(

1
0

)

− sin t

(

0
1

)

+ i sin t

(

1
0

)

+ i cos t

(

0
1

)]

.

The general solution is:

~x = c1e
− 1

2
t

[

cos t

(

1
0

)

− sin t

(

0
1

)]

+ c2e
− 1

2
t

[

sin t

(

1
0

)

+ cos t

(

0
1

)]

,

and we can write out each component

x1(t) = e−
1

2
t(c1 cos t+ c2 sin t)

x2(t) = e−
1

2
t(−c1 sin t+ c2 cos t)

Phase portrait: If c1 = 0, we have

x2
1 + x2

2 = (e−
1

2
t)2c22(sin

2 t + cos2 t) = (e−
1

2
t)2c22.

If c2 = 0, we have
x2
1 + x2

2 = (e−
1

2
t)2c21.

In general, if c1 6= 0 and c2 6= 0, we can show:

x2
1 + x2

2 = (e−
1

2
t)2(c21 + c21).

The trajectories will be spirals, with arrows pointing toward the origin. To
determine with direction they rotate, we check a point on the x1 axis:

~x =

(

1
0

)

, ~x′ = A~x =

(

−1
2

−1

)

.

So the spirals rotate clockwise. And the origin is a stable equilibrium point.
See the picture below.

113



−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

114



7.8: Repeated eigenvalues

Here we study the case where the two eigenvalues are the same, say λ1 =
λ2 = λ. This can happen, as we will see through our first example.

Example 1. Let

A =

(

1 −1
1 3

)

.

Then

det(A−λI) = det

(

1− λ −1
1 3− λ

)

= (1−λ)(3−λ)+1 = λ2−4λ+3+1 = (λ−2)2 = 0,

so λ1 = λ2 = 2. And we can find only one eigenvector ~v = (a, b)T

(A− λI)~v =

(

−1 −1
1 1

)

·
(

a
b

)

= 0, a+ b = 0.

Choosing a = 1, then b = −1, and we find ~v =

(

1
−1

)

. Then, one solution

is:

~z1 = eλt~v = e2t
(

1
−1

)

.

We need to find a second solution. Let’s try ~z2 = teλt~v. We have

~z′ = eλt~v + λteλt~v = (1 + λt)eλt~v

A~z2 = Ateλt~v = teλt(A~v) = teλtλ~v = λteλt~v

If ~z2 is a solution, we must have

~z′ = A~z → 1 + λt = λt

which doesn’t work.

Try something else: ~z2 = teλt~v + ~ηeλt. (here ~η is a constant vector to be
determined later). Then

~z′2 = (1 + λt)eλt~v + λ~ηeλt = λteλt~v + eλt(~v + λ~η)

A~z2 = λteλt~v + A~ηeλt.
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Since ~z2 is a solution, we must have ~z′ = A~z. Comparing terms, we see we
must have

~v + λ~η = A~η, (A− λI)~η = ~v.

This is what one uses to solve for ~η. Such an ~η is called a generalized eigen-
vector corresponding to the eigenvalue λ.

Back to the original problem, to compute this ~η, we plug in A and λ, and
get

(

−1 −1
1 1

)

·
(

η1
η2

)

=

(

1
−1

)

, η1 + η2 = −1.

We can choose η1 = 0, then η2 = −1, and so ~η =

(

0
−1

)

.

So the general solution is

~x = c1~z1 + c2~z2 = c1e
λt~v + c2(te

λt~v + eλt~η)

= c1e
2t

(

1
−1

)

+ c2

[

te2t
(

1
−1

)

+ e2t
(

0
−1

)]

.

Phase portrait:

• As t → ∞, we have |~x| → ∞ unbounded.

• As t → −∞, we have ~x → 0.

• If c2 = 0, then ~x = c1e
λt~v, so the line through the origin in the direction

of ~v is a trajectory. Since λ > 0, the arrows point away from the origin.

• If c1 = 0, then ~x = c2(te
λt~v + eλt~η). For this solution, as t → ∞, the

dominant term in ~x is teλt~v. This means the solution approach the
direction of ~v. On the other hand, as t → −∞, the dominant term in ~x
is still teλt~v. This means the solution approach the direction of ~v. But,
due to the change of sign of t, the ~x will change direction and point
toward the opposite direction as when t → ∞.

How does it turn? We need to go back to the system and check the
directional field. At ~x = (1, 0), we have ~x′ = (1, 1)T , and at ~x = (0, 1),
we have ~x′ = (−1, 3)T . There it turns kind of counter clockwise. See
figure below.
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• For the general case, with c1 6= 0 and c2 6= 0, a similar thing happens.
As t → ∞, the dominant term in ~x is teλt~v. This means the solution
approach the direction of ~v. As t → −∞, the dominant term in ~x is
still teλt~v. This means the solution approach the direction of ~v. But,
due to the change of sign of t, the ~x will change direction and point
toward the opposite direction as when t → ∞. See plot below.
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Remark: If λ < 0, the phase portrait looks the same except with reversed
arrows.

Definition. If A has repeated eigenvalues, the origin is called a improper
node. It is stable if λ < 0, and unstable if λ > 0.

Example 2. Find the general solution to the system ~x′ =

(

−2 2
−0.5 −4

)

~x.

We start with finding the eigenvalues:

det(A−λI) = (−2−λ)(−4−λ)+1 = λ2+6λ+8+1 = (λ+3)2 = 0, λ1 = λ2 = λ = −3
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We see we have double eigenvalue. The corresponding eigenvector ~v = (a, b)T

(A− λI)~v =

(

−2 + 3 2
−0.5 −4 + 3

)

·
(

a
b

)

=

(

1 2
−0.5 −1

)

·
(

a
b

)

= 0

So we must have a + 2b = 0. Choose a = 2, then b = −1, and we get

~v =

(

2
−1

)

. To find the generalized eigenvector ~η, we solve

(A− λI)~η = ~v,

(

1 2
−0.5 −1

)

·
(

η1
η2

)

=

(

2
−1

)

.

This gives us one relation η1 +2η2 = 2. Choose η1 = 0, then we have η2 = 1,

and so ~η =

(

0
1

)

. The general solution is

~x = c1e
λt~v+c2(te

λt~v+eλt~η) = c1e
3t

(

2
−1

)

+c2

[

te3t
(

2
−1

)

+ e3t
(

0
1

)]

.

Just for fun, I include the phase portrait below.
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The origin is an improper node which is unstable.
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Summary of the chapter:

λ1,2 eigenvalues type of origin stability

real λ1 · λ2 < 0 saddle point unstable
real λ1 > 0, λ2 > 0, λ1 6= λ2 node (source) unstable
real λ1 < 0, λ2 < 0, λ1 6= λ2 node (sink) stable
real λ1 = λ2 = λ improper node stable if λ < 0, unstable if λ > 0

complex λ1,2 = i± β center stable but not asymptotically
complex λ1,2 = α± iβ spiral point stable if α < 0, unstable if α > 0
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